Environmental Compliance Solutions in the Age of Air Toxics and CSAP Rules

McIlvaine Hot Hour

J. Buschmann

October 27, 2011
Agenda

Overview of Air Toxics Rule

Solution Portfolio to Address Regulatory Requirements

Utility Overall Compliance Strategy

Conclusions
The following standards have been proposed for coal-fired EGUs based on emissions achieved by the average of the top 12% best controlled sources (existing) and best comparable single source (new):

Proposed Emission Values for Units Designed for Coal ≥ 8,300 Btu/lb

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Existing (US)</th>
<th>Existing (Metric) – Approx.*</th>
<th>New (US)</th>
<th>New (Metric) – Approx.*</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCl</td>
<td>0.0020 lb/MMBtu or 0.20 lb/MWh</td>
<td>~ 3 mg/Nm3 or ~ 3.5 mg/Nm3</td>
<td>0.30 lb/GWh</td>
<td>~ 0.05 mg/Nm3</td>
</tr>
<tr>
<td>SO2</td>
<td>0.20 lb/MMBtu or 2 lb/MWh</td>
<td>~ 350 mg/Nm3</td>
<td>0.40 lb/MWh</td>
<td>~ 65 mg/Nm3</td>
</tr>
<tr>
<td>Total PM</td>
<td>0.030 lb/MMBtu or 0.30 lb/MWh</td>
<td>~ 45 mg/Nm3 or ~ 50 mg/Nm3</td>
<td>0.050 lb/MWh</td>
<td>~ 8 mg/Nm3</td>
</tr>
<tr>
<td>Hg</td>
<td>1.2 lb/TBtu or 0.008 lb/GWh</td>
<td>~ 1.8 µg/Nm3</td>
<td>0.000010 lb/GWh</td>
<td>~ 0.18 µg/Nm3</td>
</tr>
</tbody>
</table>

Proposed Emission Values for Units Designed for Coal < 8,300 Btu/lb

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Existing (US)</th>
<th>Existing (Metric) – Approx.*</th>
<th>New (US)</th>
<th>New (Metric) – Approx.*</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCl</td>
<td>0.0020 lb/MMBtu or 0.20 lb/MWh</td>
<td>~ 3 mg/Nm3 or ~ 3.5 mg/Nm3</td>
<td>0.30 lb/GWh</td>
<td>~ 0.05 mg/Nm3</td>
</tr>
<tr>
<td>SO2</td>
<td>0.20 lb/MMBtu or 2 lb/MWh</td>
<td>~ 350 mg/Nm3</td>
<td>0.40 lb/MWh</td>
<td>~ 65 mg/Nm3</td>
</tr>
<tr>
<td>Total PM</td>
<td>0.030 lb/MMBtu or 0.30 lb/MWh</td>
<td>~ 45 mg/Nm3 or ~ 50 mg/Nm3</td>
<td>0.050 lb/MWh</td>
<td>~ 8 mg/Nm3</td>
</tr>
<tr>
<td>Hg</td>
<td>4.0 lb/TBtu or 0.040 lb/GWh</td>
<td>~ 6 µg/Nm3 or ~ 75 µg/Nm3</td>
<td>0.040 lb/GWh</td>
<td>~ 75 µg/Nm3</td>
</tr>
</tbody>
</table>

Conversion to metric values by Alstom. Assumes coal heat values of 8,500 Btu/kW or 8.5 MBtu/MW or 0.0085 TBtu/GW
Agenda

Overview of Air Toxics Rule

Solution Portfolio to Address Regulatory Requirements

Utility Overall Compliance Strategy

Conclusions
Solution Portfolio to Address
Regulatory Requirements

MERCURY CONTROL
• No “one-size-fits-all” solution for mercury control
 – Each plant has its own unique opportunities/challenges
 – Fuel type, boiler operation, and backend configuration
 – Fit within current / future regulations

• Alstom has developed diverse mercury control options in order to meet unique challenges of customers
 – Coal additive for Hg oxidation: KNX™
 – Activated Carbon Injection (ACI) + Baghouse Installation: Filsorption
 – “Enhanced” sorbent injection: Mer-Cure™

Alstom Hg control tools work stand-alone and combined
Alstom Mercury Control Technologies

Mer-Cure™

Filsorption

KNX™ Additive Storage Tank
Solution Portfolio to Address Regulatory Requirements

NOx CONTROL
Firing System Experience

<table>
<thead>
<tr>
<th>Firing System</th>
<th>Units</th>
<th>MWe</th>
</tr>
</thead>
<tbody>
<tr>
<td>LNCFS™ - P2</td>
<td>40</td>
<td>5,406</td>
</tr>
<tr>
<td>LNCFS™ Level I</td>
<td>40</td>
<td>11,245</td>
</tr>
<tr>
<td>LNCFS™ Level II</td>
<td>67</td>
<td>18,100</td>
</tr>
<tr>
<td>LNCFS™ Level III</td>
<td>78</td>
<td>35,327</td>
</tr>
<tr>
<td>TFS 2000R™</td>
<td>29</td>
<td>12,535</td>
</tr>
<tr>
<td>Cyclones OFA</td>
<td>2</td>
<td>508</td>
</tr>
<tr>
<td>Oil/Gas OFA</td>
<td>31</td>
<td>11,243</td>
</tr>
<tr>
<td>Other T fired</td>
<td>11</td>
<td>2,844</td>
</tr>
<tr>
<td>RSFC™ / Wall Firing</td>
<td>41</td>
<td>5,155</td>
</tr>
</tbody>
</table>

339 Units and 102,363 MWe of Low Nox Burner experience
SCR DeNOx

SCR Features and Advantages:

• NOx reduction efficiency over 90%
• Fuel Types
 - Coal, Oil, Gas
 - Waste to Energy
 - Sludge, Bio Fuel
• Broad SCR Design Experience
 - High, Medium, Low Dust
 - Tail End
 - > 30,000 MW in operation
• Catalyst Experience
 - Design Experience with many worldwide suppliers
 - Ongoing testing of Catalyst Designs

SCR provides DeNOx in diverse spectrum of applications
Solution Portfolio to Address Regulatory Requirements

SO$_2$ / HCl CONTROL

- Wet Flue Gas Desulfurization
Limestone WFGD

WFGD Features and Advantages:
- Over 32,000 MW of experience
- SO₂ Removal efficiencies greater than 98%
- Availability greater than 98%
- Experience with high sulfur fuels (4.5% S; >5,000 ppm SO₂)
- Byproduct gypsum (sale or landfill)

Orlando Utilities Commission
Stanton Units 1&2 - 2 x 465 MW
Orlando, Florida

WFGD Remains Solution of Choice for Ultra-High SO₂ Removal
Solution Portfolio to Address
Regulatory Requirements

SO₂ / HCl CONTROL

Dry Flue Gas Desulfurization
Spray Dryer Absorber (SDA) FGD

SDA Features and Advantages:
- Over 13,000 MW operating
- First 440 MW DFGD installed 1978
- Boiler Units from 10 to 930 MW
- Single or Multiple Reactors
- Over 100 Installations
- Single or Multiple Atomizers
- SO2 Removal Efficiencies - 95%

SDA is proven technology with extensive reference list

GRDA Unit 2 Generating Station
1 x 520 MW DFGD
Pryor, Oklahoma
SDA FGD Process Flow

Flue Gas

Spray Dryer

Fabric Filter

I.D. Fan

Disposal

Water

Lime

Slaker

Storage Tank

Feed Tank

Recycle Silo

Disposal

Disposal
NID Features and Advantages:
• Over 6,000 MW operating
• Over 1,000 MW under construction
• First 120 MW NID installed 1996
• Boiler Units from 10 to 600 MW
• Modular Design
• Over 70 Installations
• Installed Spare Capacity
• SO2 Removal Efficiencies - 98%
• 2.5% Sulfur fuels and higher

NID offers modularization and reduced footprint
Key Benefits of NID FGD

- Multi-pollutant control: High efficiency removal of SO2, SO3, PM, HCl, and HF
 - SO2 removal: ≤ 98%
 - SO3 emissions: < 1 ppm
 - PM (filterable): < 0.012 lb/MBtu or 15 mg / Nm³

- Lime-based semi-dry FGD technology
 - Patented, integrated hydrator/mixer – no slurry handling
 - Zero liquid discharge
 - Low water consumption; ability to use low quality water: CTB, WFGD purge

- Simple, compact design
 - Small footprint offers retrofit advantage
 - Low capital cost
 - Low BOP/construction cost
 - Low O&M cost

- Modular design
 - High reliability
 - Excellent turndown
 - No scale-up issues

- Fuel flexibility of up to 2.5% sulphur coal or higher

Meeting most stringent regulations at minimized cost
PARTICULATE CONTROL
Fabric Filter Systems

Alstom FF Advantages and Features:

- Meets the latest world standards for particulate emissions control
- Reverse Gas Design (RGFF)
 - Reverse Gas with Sonic Horn Assist Bag Cleaning System
- High Ratio Design (LKP)
 - Intermediate Pressure/Intermediate Volume Bag Cleaning System
 - High Pressure/Low Volume Bag Cleaning System
- Fabric Filter compartments retrofittable into Electrostatic Precipitator casings
- New or retrofit applications
- Optimized gas and dust distribution to enhance performance and operation
- Over 18,000 MW operating

Public Service Company, Colorado
Pawnee Station, Unit 1, 550 MW

Alstom FF designs ensure Particulate Matter compliance
Solution Portfolio to Address Regulatory Requirements

PARTICULATE CONTROL

- Upgrades and Conversions
SIR, EPIC, and SULPHIC

- Spark handling
- EPOQ
- OpOpt
- PCR

Resistivity level
- Very high
- High
- Ok
- Low
- Very low

SULPHIC II

SO3 quantity (representative)

mA

Rapping

Rapping

time

PM Control – ESP Products
PM Control – ESP to FF Conversion

Duvha 3 x 600 MW

Playford: 4 x 60 MW

• 10 upgrades successfully executed globally. Using Alstom Fabric Filter design and products.

Extensive experience in ESP to FF conversions
Agenda

Overview of Air Toxics Rule

Solution Portfolio to Address Regulatory Requirements

Utility Overall Compliance Strategy

Conclusions
NOx Technology Selection

Space Availability and Permitted Emissions are Critical
Key Drivers are……

• Current NOx level
• Unit size, capacity factor, service life
• Existing Burner Design
• Emission limits
 - Percent Reduction
 - Permitted Emissions
• Site issues – Available area
• Other
 - SCR is high cost and high efficiency
 - SNCR and LNB are low cost but low efficiency
 - SCR requires much more space

Direction not always obvious
Lifecycle cost and reliability are critical. Key Drivers are……

- Fuel sulfur
- Unit size, capacity factor, service life
- Existing Equipment
- Redundancy
- Emission limits
 - Criteria pollutants
 - Multi-pollutant considerations
- Site issues – Available area
- Other
 - Reagent cost, quality, availability
 - Byproduct sale/disposal
 - Project time available

Direction not always obvious
Agenda

Overview of Air Toxics Rule

Solution Portfolio to Address Regulatory Requirements

Utility Overall Compliance Strategy

Conclusions
Conclusions

• 2011 federal regulations have introduced new limits for a variety of pollutants including SO₂, HCl, NOx, PM, and Hg.

• The key to compliance involves finding the right mix between a host of available and proven technologies.

• The solution of choice will vary by customer – if not by plant – and will be driven by multiple factors including envisioned plant life, existing equipment, performance required, plant layout, capex / opex considerations, schedule.

• The compliance timeline is short. Engage OEMs now to develop the right solution for your specific needs.

ALSTOM’s Extensive Technology Portfolio Meets Your Specific Needs
Contacts

John Buschmann
- Technology Manager
- john.buschmann@power.alstom.com
- 865-694-5223

Tim Hartmann
- Product Marketing Manager
- tim.hartmann@power.alstom.com
- 865-560-1660