



# U.S. Program for Advanced Ultrasupercritical (A-USC) Coal Fired Power Plants

#### **Dr. Jeffrey Phillips**

Senior Program Manager, Advanced Generation

McIlvaine Company "Hot Topic" Webcast: Next Generation of Coal Combustion Technologies

March 24, 2011

## **Definitions**

| Nomenclature                                | Conditions                                                        | Net Plant<br>Efficiency | Net Plant Heat<br>Rate (HHV) |  |  |
|---------------------------------------------|-------------------------------------------------------------------|-------------------------|------------------------------|--|--|
| Subcritical                                 | 2400 psig (16.5 MPa)<br>1050ºF/1050ºF (565ºC/565ºC)               | 35%                     | 9751 Btu/kWh                 |  |  |
| Supercritical<br>(SC)                       | >3600 psig (24.8 MPa)<br>1050ºF/1075ºF (565ºC/585ºC)              | 38%                     | 8981 Btu/kWh                 |  |  |
| Ultrasupercritical<br>(USC)                 | >3600 psig (24.8 MPa)<br>1100ºF/1150ºF (593ºC/621ºC)<br>and above | >42%                    | 8126 Btu/kWh                 |  |  |
| "Advanced"<br>UltraSupercritical<br>(A-USC) | 5000 psig (34.5 MPa)<br>1250ºF (677ºC)<br>and above               | >45%                    | 7757 Btu/kWh                 |  |  |



### Materials for A-USC Coal Power Plants – U.S. Department of Energy (DOE) and Ohio Funded Project



During 1<sup>st</sup> 60 years of the 20<sup>th</sup> century, steam turbine temperatures rose from 500 F to 1200 F

- Thermal efficiency rose from 4% to 40% (HHV)
- Eddystone experienced several materials issues
  - Derated from 1200 F to 1135 F
- No improvements for 50 years!

#### **Provides 20% lower CO<sub>2</sub> emissions than existing fleet average**



## **Heat Rate Improvement Technologies**





### Acknowledgements: U.S. DOE / Ohio Coal **Development Office (OCDO) A-USC Steam Boiler and Turbine Consortia**





MAKING OHIO COAL THE CLEAN CHOICE





Federal – State – National Laboratory

Non Profit – For Profit

**Cost Sharing Consortium** 





imagination at work





MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY



## Primary Technical Goals of the U.S. A-USC Materials Program

- Materials Technology Evaluation
  - Focus on nickel-based alloys
  - Development of fabrication and joining technology for new alloys
- Unique Conditions for U.S. Program Considerations
  - Higher temperatures than European Program (760 C versus 700 C) means additional alloys are being evaluated
  - Corrosion resistance for U.S. coals
  - Data for ASME code acceptance of new materials
  - Phase II Boiler work includes Oxycombustion

## **Materials Limit the Current Technology**



# U.S. DOE – OCDO Advanced USC Project

#### Accomplishments over the past 10 years



General design studies show



Welding Technology Developments





**HP** Turbine Concept





ECTRIC POWER

Steam-Side Oxidation



Fireside Corrosion (High-Sulfur Coal & In-Plant Testing)

## **Successes: Air-cooled Probes**

Cleaned surface of an air-cooled probe exposed for 2 years in a coal-fired boiler at A-USC temperatures



Inconel 740 shows lower wastage than a high-chromium cladding (50/50), a 23% Cr wrought alloy (HR6W), and weld overlays (WO)



# **Successes: Welding Technology**



Original Inconel 740 weld trials (Liquation cracking in heat affected zone

Consortium Research Today: Repeatable 3" (75-mm) thick Inconel 740 welds without cracking



Consortium research has demonstrated revolutionary progress in nickel-based alloy welding



### A-USC Research & Development (R&D)

- Current Boiler & Turbine Materials R&D
  - Effect of oxycombustion on materials
  - Improved weld/weldment performance
  - Code approval of new alloys
  - Long-term high-temperature material property databases
  - Production of larger forgings
  - Scale-up and repair of nickel-based castings







# **Timelines of Advanced USC Development**

|                                                  | 2011 | 2012    | 2013     | 2014 | 2015    | 2016 | 2017  | 2018 | 2019 | 2020    | 2021 | 2022 | 2023 | 2024 | 2025 |
|--------------------------------------------------|------|---------|----------|------|---------|------|-------|------|------|---------|------|------|------|------|------|
| Current<br>Materials<br>Development<br>Program   |      | PPD     |          |      |         |      |       |      |      |         |      |      |      |      |      |
|                                                  |      | KQU     |          |      |         |      |       |      |      |         |      |      |      |      |      |
| " <b>Last Lap"</b><br>Component Test<br>Facility |      | Design  | Build    |      | Operate |      |       |      |      |         |      |      |      |      |      |
| Supplier<br>Development                          |      | Build 1 | est Piec | es   |         |      |       |      |      |         |      |      |      |      |      |
| A-USC 600 MW<br>Demonstration<br>Plant           |      |         |          |      |         |      |       |      |      |         |      |      |      |      |      |
| >1300 F Demo<br>Plant                            |      |         |          |      | De      | sign | Build |      |      | Operate |      |      |      |      |      |
|                                                  |      |         |          |      | Pe      | rmit |       |      |      |         |      |      |      |      |      |
| Design Build Other R&D   Permit Operate          |      |         |          |      |         |      |       |      |      |         |      |      |      |      |      |

#### **Provides 5 Years of Commercial-scale Experience by 2025**



## **Together...Shaping the Future of Electricity**

