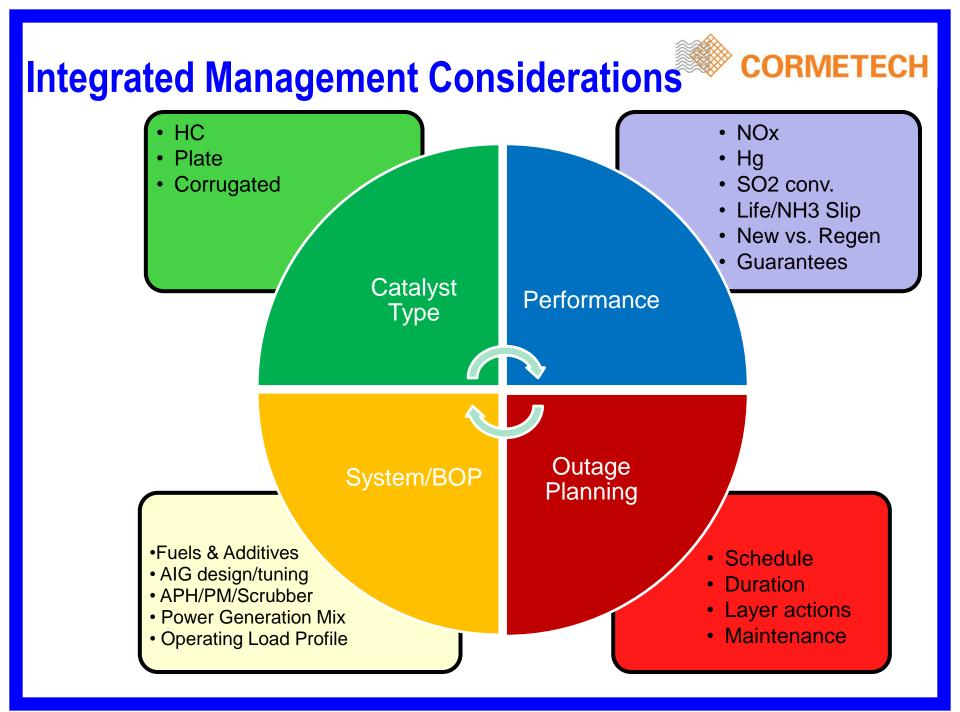


SCR Catalyst Selection Considerations

McIlvaine Hot Topic Hour October 21st, 2010


Cormetech Approach

 Understand the unique perspectives and challenges for individual utilities and/or plants

- Not all utilities/plants have the same drivers

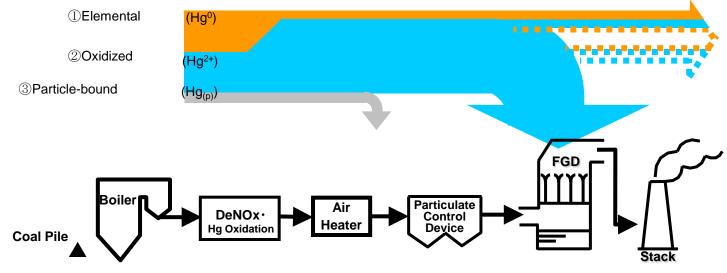
- Utilize strong experience and knowledge base in combination with strategic collaborations to provide full range of solution options
 - Catalyst Technology Advancements
 - Optimization Tools
 - Strategic Collaboration

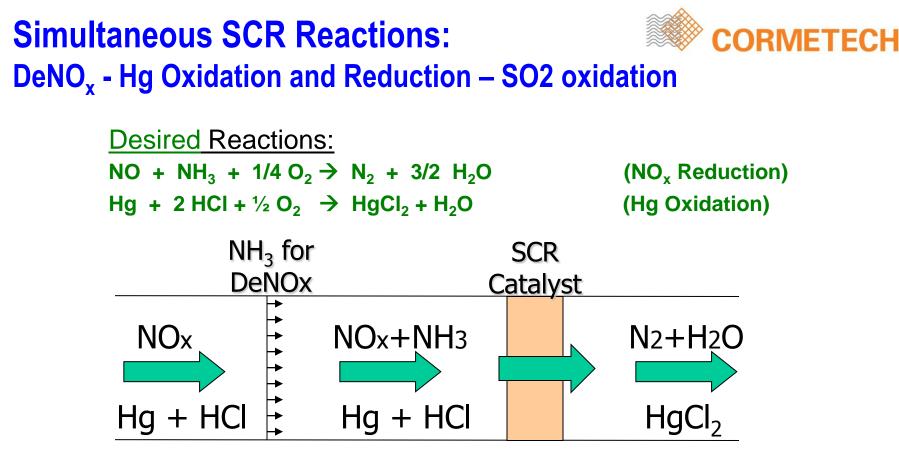
Catalyst Management

Current Active Projects:

- **1. Continuous Improvement**
 - Activity & SO₂ conversion \rightarrow Improved \$ per K/AV
- 2. Advanced Hg Oxidation catalyst
- 3. Selective Decomposition of Ammonia
- 4. Proven Evaluation Tools
- 5. Strategic Collaboration

Advanced Hg Oxidation catalyst




• Drivers

- CAMR vacated but still anticipate Federal and State rules to require 90% reduction (basis coal pile to stack)
- Will it be 90%? Will it be a rate? How does the requirement effect technology selection/applicability (fuel)/cost?

Timing

- − Expected Rule 2011 \rightarrow compliance 2014?
- Market Needs
 - What is anticipated oxidation need from SCR?
 - What is anticipated contribution from APH, ESP, FGD, etc.?

Undesired Reactions:

 $HgCl_2 + NH_3 + \frac{1}{4}O_2 \rightarrow Hg + 2 HCl + \frac{1}{2}N_2 + \frac{1}{2}H_2O$ (HgCl₂ Reduction by NH₃) $HgCl_2 + SO_2 + H_2O \rightarrow Hg + 2 HCl + SO_3$ (HgCl₂ Reduction by SO₂) $SO_2 + \frac{1}{2}O_2 \rightarrow SO_3$ (SO₂ Oxidation)

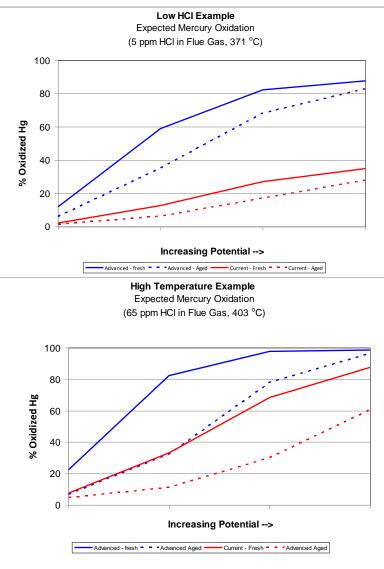
Co-Benefit Improvement Strategy

Increase Rate of Desired Reactions: NO + NH₃ + 1/4 O₂ \rightarrow N₂ + 3/2 H₂O Hg + 2 HCI + $\frac{1}{2}$ O₂ \rightarrow HgCl₂ + H₂O

(NO_x Reduction) (Hg Oxidation)

- Advanced SCR Catalyst!

Decrease Rate of Undesired Reactions:


 $HgCl_2 + NH_3 + \frac{1}{4}O_2 \rightarrow Hg + 2 HCl + \frac{1}{2}N_2 + \frac{1}{2}H_2O$ (HgCl_2 Reduction by NH_3) $HgCl_2 + SO_2 + H_2O \rightarrow Hg + 2 HCl + SO_3$ (HgCl_2 Reduction by SO_2) $SO_2 + \frac{1}{2}O_2 \rightarrow SO_3$ (SO_2 Oxidation)

- Advanced SCR Catalyst!

Advanced Hg Oxidation MHI/Cormetech Joint Development

Additional Features

- Much lower negative impact from reducing species
- Designed for high durability over time
- Can be used alone or in combination with existing catalyst
- Reduced total compliance cost

Selective Decomposition of Ammonia

• Drivers:

- NH3/NOx maldistribution requires periodic tuning and limits NOx reduction achievable
 - NH3 in excess in some areas due to maldistribution can lead to downstream equipment fouling
- Continued pressures on total NOx emissions

What is value of:

- Reduced tuning costs
- DP savings
- Reduced fouling
- High NOx Reduction (95%+)

SDA Catalyst

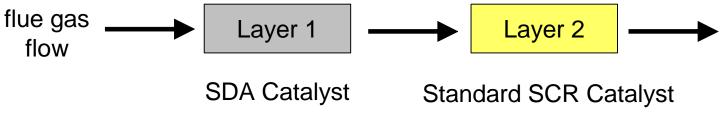
- US Patent 7658898 (joint Cormetech–MHI patent)
- Reaction network for SDA catalyst:

Reaction equations for standard SCR catalyst

SDA catalyst incorporates NH₃ oxidation functionality (without increasing SO₂ oxidation) **DeNOx:**

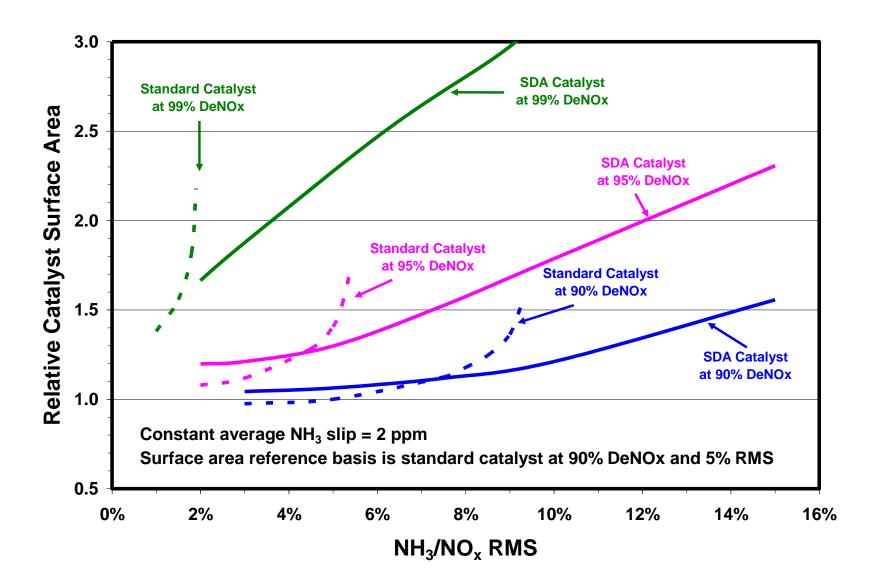
 $NO + NH_3 + 1/4O_2 \rightarrow N_2 + 3/2H_2O$

SO₂ oxidation: SO₂ + $1/2O_2 \rightarrow SO_3$


 NH_3 oxidation: $4NH_3 + 3O_2 \rightarrow 2N_2 + 6H_2O$ Dominant NH_3 $4NH_3 + 5O_2 \rightarrow 4NO + 6H_2O$ oxidation reactions $4NH_3 + 7O_2 \rightarrow 4NO_2 + 6H_2O$ Mot active $2NH_3 + 2O_2 \rightarrow N_2O + 3H_2O$ Low activity (1-2 ppm)

 $SO_3 reduction:$ $SO_3 + 2NH_3 + O_2 \rightarrow SO_2 + N_2 + 3H_2O$

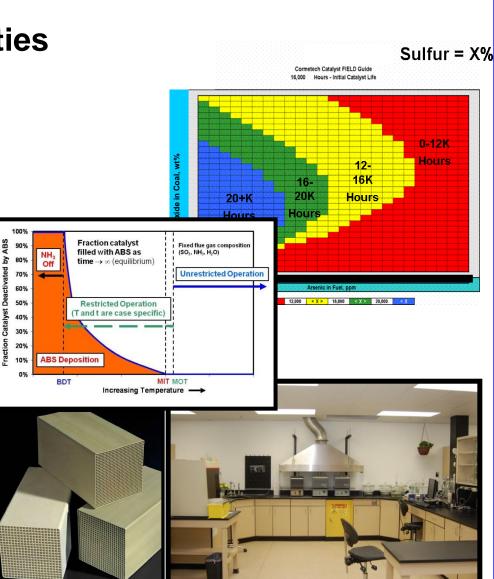
Simulations: Case Studies



- Developed kinetic model for SDA catalyst
 - Predict DeNOx, NH_3 oxidation, and SO_2 oxidation activity
 - Utilized 15 sets of fresh performance data
- **Proposed system layer arrangement:**

- Ran simulations:
 - Catalyst surface area vs. RMS at 90%, 95%, and 99% DeNOx
 - Two case studies (compare SDA system vs. standard catalyst):
 - 90% DeNOx and 99% DeNOx

Impact of NH₃/NO_x RMS on Catalyst Surface Area (or Catalyst Volume for Constant Pitch)



Evaluation Tools

- Multiple Tools/Capabilities
 Including:
 - Fuels management tool
 - Additives Analysis
 - Laboratory Analysis
 - AIG Design/Tuning
 - Lifecycle management economic evaluation tool
 - Expanded operating temperature range

Strategic Collaboration

 Cormetech and CoaLogix are pleased to announce the collaboration of the two of the leading Supply and Technology Companies for SCR Services

Cormetech & CoaLogix

Core Competencies & Capabilities

Cormetech

- SCR Catalyst Manufacturing
- SCR System Application/Management Experience
- Technology Advancements in Hg oxidation, SDA, SO₃ mit., etc.

• CoaLogix

- Regeneration Technology/Experience
- SCR Management Experience
- SO₃ and Hg mitigation (FLSmidth Agreement)

Cormetech & CoaLogix

- Key Benefits of Cormetech Certification
 - Combination brings 360° Catalyst Mgmt Service
 - Integrated performance solutions and warranties
 - Simplified and consolidated purchasing and inventory management & supply assurances
 - Long-term SCR catalyst management commitment
 - Integrated technology to assure lowest compliance cost

Future will be focused on Implementation of Regeneration & Advanced Technologies to meet New Air Emissions Challenges