

Carbon Dioxide

Sources of Emissions and Conventional Control Technology

Gerald L Young

Introduction

Carbon dioxide (CO₂) emissions generated from anthropogenic activities are known to be relatively small and in comparison with the gross carbon fluxes from natural systems, they represent only a fraction (about 2%) of total global emissions.

Introduction

Global carbon dioxide emissions from cement production have more than doubled since the mid 1970s

and now represent 3.8% of global CO₂ releases from fossil-fuel burning and cement production

- In cement plants CO₂ is mainly generated by three means:
- Calcination of limestone in the clinker making process.
- Consumption of thermal energy due to primary use of carbon intensive fuels e.g. coal.
- Consumption of electrical energy, because most electricity is generated by thermal power stations, which also use carbon intensive fuels.

SOURCES OF CO₂ Cement clinker contains five major oxides.

The five major oxides are SiO₂, Al₂O₃, Fe₂O₃, CaO and MgO.

In naturally occurring raw materials, the CaO and MgO occur as carbonates (CO₃⁼)

CaO is formed in the kiln from CaCO₃ (limestone) and MgO is formed in the kiln from MgCO₃ according to the following chemical reactions:

SOURCES OF CO₂

 $CaCO_3 + heat ----> CaO + CO_2$ $800 - 900^{\circ}C$ 750 kcal/kg CaO

 $MgCO_{3} + heat ----> MgO + CO_{2}$ $500 - 700^{\circ}C$ 600 kcal/kg MgO

SOURCES OF CO₂

With conventional (naturally occurring) raw materials and when producing ASTM Type I or II cement, CO₂ emissions will amount to about

0.55 tons of CO₂ per ton of clinker produced,

not including CO₂ produced by fuel combustion.

SOURCES OF CO₂

Emissions of CO₂ from fuel used

in a rotary kiln producing cement clinker

can range from 0.25 – 0.5 tons of CO₂

per ton of clinker produced.

Description of CO₂

Control Technologies

Description of CO₂ Control Technologies

Conventional technologies

- Reduction of clinker/cement ratio in cement
- Energy efficiency measures
- Using waste fuels or biomass as fuel
- Using decarbonated (secondary/waste) raw materials

Reducing CO₂ by reducing the clinker to cement ratio:

Reducing the amount of clinker used when making finished cement is the most effective current method of reducing CO₂ emissions from the cement manufacturing industry.

The level of clinker replacement by additives depends on the availability of blending materials and on standard requirements

The limits generally range from as low as 2% for silica fume, to about 60% for granulated blast furnace slag.

CONVENTIONAL TECHNOLOGIES Reducing CO₂ by reducing electrical energy consumption:

- Electric Motor Retrofit
- **Replacing older motors with newer, high efficiency motors can save electrical power and reduce CO₂ emissions at a thermal power plant**
- Variable Frequency Drives (vfd)

Using variable frequency drives to control airflow through fans or fluid flow in pumps can reduce electrical power and reduce CO₂ emissions at a thermal power plant

Reducing CO₂ by reusing waste heat:

Cogeneration of Power

In cement plants with modern technology, it is possible to meet 25 – 30 % of total plant power requirements through cogeneration.

Sea Water Desalination

Exhaust air from the clinker cooler vent on a 6,000mt/d kiln was used to produce steam in a boiler which is then used in a multiple effect desalination (MED) plant to produce desalinated water **CONVENTIONAL TECHNOLOGIES** Reducing CO₂ by using waste fuels :

- Rotary kilns producing cement clinker are uniquely suited for using waste materials as fuels.
- It is possible to substitute more than 50% of a cement kiln's fuel requirements with waste fuels
- The use of a flammable waste reduces the use of conventional fossil fuels
- There is a net reduction of CO₂ emissions if wastes are used as a fuel rather than incinerated.

Reducing CO₂ by using decarbonated raw material:

Steel Slag

Crystalline slags may be used as a partial substitute for raw materials in cement kiln feed.

These slags typically have chemical analyses similar to cement clinker; however, the CaO component is not a carbonate.

The use of slag as a component in kiln feed has the potential to reduce CO₂ emissions per ton of clinker

Thank You