SCR technology for NOx control
CCPP, power generation with highest overall efficiency at lowest emissions limits

Johannes Lind
ANDRITZ Energy & Environment

Christian Fauland
VERBUND Thermal Power

POWER-GEN Europe, 4th – 6th of June 2013, Vienna, Austria
Content

- General
- Products of ANDRITZ air pollution control
- Best Available Techniques (BREF document)
- Emission Limits for CCPP in Europe
- Performance data for Mellach power plant
- SCR for Mellach power plant
- Selected References
- Summary
Content

- General
 - Products of ANDRITZ air pollution control
 - Best Available Techniques (BREF document)
 - Emission Limits for CCPP in Europe
 - Performance data for Mellach power plant
 - SCR for Mellach power plant
 - Selected References
 - Summary
ANDRITZ has supplied secondary NOx emission control equipment for various types of firing and fuels (coal, oil, gas, biomass, waste, off gases etc.)

ANDRITZ`s first reference for Selective Catalytic Reduction (SCR) of NOx was started up in the year 1986 at the coal fired power plant Mellach/ Austria.

The strict Austrian emission limit for NOx leads to first integration of SCR for CCPP in Leopoldau, Linz Süd and Donaustadt Unit 03.

ANDRITZ was awarded contracts for 2 x SCR at CCPP GaoAnTun in Beijing/China in 2012.

SCR for Mellach CCPP Unit 10 & 20 was taken over in 2012.
Content

- General
- **Products of ANDRITZ air pollution control**
- Best Available Techniques (BREF document)
- Emission Limits for CCPP in Europe
- Performance data for Mellach power plant
- SCR for Mellach power plant
- Selected References
- Summary
Products of ANDRITZ air pollution control

Wide product range for removal of SOx, dust, Hg, heavy metals, NOx, …

<table>
<thead>
<tr>
<th></th>
<th>Wet method</th>
<th>Dry method</th>
<th>DeNOx</th>
</tr>
</thead>
<tbody>
<tr>
<td>POWER STATIONS</td>
<td>Wet limestone FGD</td>
<td>Dry Sorption Turbo CDS / TurboSorp</td>
<td>SCR (high dust application)</td>
</tr>
<tr>
<td></td>
<td>FGD plus Mercury removal</td>
<td>Mercury removal</td>
<td>SCR for combined cycle power plants (CCPP)</td>
</tr>
<tr>
<td></td>
<td>Sea Water FGD</td>
<td>Dust removal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CO2 absorption</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INDUSTRY</td>
<td>Wet FGC (calcium and NaOH based)</td>
<td>Dry Sorption TurboSorp</td>
<td>SCR (low dust / clean gas application)</td>
</tr>
<tr>
<td>incl. EfW and biomass</td>
<td>Multistage scrubber Combined systems</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Content

- General
- Products of ANDRITZ air pollution control
- Best Available Techniques (BREF document)
- Emission Limits for CCPP in Europe
- Performance data for Mellach power plant
- SCR for Mellach power plant
- Selected References
- Summary
BAT (Best Available Technique) for CCPP emission limits

<table>
<thead>
<tr>
<th>Plant Type (new large combustion plants, LCP)</th>
<th>Emission level associated with BAT (mg/m³n)</th>
<th>O₂ level (%)</th>
<th>BAT options to reach this level</th>
</tr>
</thead>
<tbody>
<tr>
<td>New CCPP without supplementary firing</td>
<td>NOx 20-50, CO 5-100</td>
<td>15</td>
<td>Dry low NOx premix burners or SCR</td>
</tr>
<tr>
<td>New CCPP with supplementary firing</td>
<td>NOx 20-50, CO 30-100</td>
<td>Plant spec.</td>
<td>Dry low NOx premix burners and low NOx burners for the boiler part or SCR or SNCR</td>
</tr>
</tbody>
</table>
Dry Low NOx burner (DLN)

DLN basic characteristic: mixing of combustion air and fuel before combustion

- ⇒ homogeneous temperature distribution
- ⇒ lower flame temperature
- ⇒ lower NOX emissions

CCPP Mellach:
- Siemens SGT5-4000F(6) with annular combustion chamber
- 24 HR3-burners (PMP)
 - 2-stage hybrid-burner
 - premix-pilotgas (PMP): mixing of pilotgas and air in axial swirler => NOx-reduction
 - premix-gas: mixing of premix-gas and air in diagonal swirler => NOx-reduction

[Figure: Siemens AG]
Dry Low NOx burner (DLN)

Premix- Gas Nozzle

Pilot- Gas Nozzle
Content

- General
- Products of ANDRITZ air pollution control
- Best Available Techniques (BREF document)
- **Emission Limits for CCPP in Europe**
- Performance data for Mellach power plant
- SCR for Mellach power plant
- Selected References
- Summary
Emission limits for CCPP in Europe

<table>
<thead>
<tr>
<th>Plant</th>
<th>Emission limit (mg/m³ n,dry)</th>
<th>O₂ level (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NOₓ</td>
<td>NH₃</td>
</tr>
<tr>
<td>EU-directive LCP</td>
<td>50 *</td>
<td>-</td>
</tr>
<tr>
<td>Austrian Law (LRV-K)</td>
<td>35</td>
<td>10 (at 0 % O₂)</td>
</tr>
<tr>
<td>Permit for CCPP Mellach</td>
<td>20 ***</td>
<td>10 (at 0 % O₂)</td>
</tr>
</tbody>
</table>

*) valid for power output at ISO conditions > 50 MW thermal, the emission limits apply for loads higher than 70 % resp.:

- NOₓ < 75 mg/Nm³ (efficiency of the gas turbine determined under ISO base load conditions) in the following cases:
 - Gas turbines used in a combined heat and power generation with an overall efficiency higher than 75 %;
 - Gas turbines used in combined cycle plants having an overall annual average electrical efficiency higher than 55 %.

**) at 100 % load

***) from minimum load to 100 % load
Content

- General
- Products of ANDRITZ air pollution control
- Best Available Techniques (BREF document)
- Emission Limits for CCPP in Europe
- Performance data for Mellach power plant
- SCR for Mellach power plant
- Selected References
- Summary
Performance data for Mellach power plant

<table>
<thead>
<tr>
<th>Data</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net electrical power output Unit 10</td>
<td>MWel</td>
<td>421</td>
</tr>
<tr>
<td>Net electrical power output Unit 20</td>
<td>MWel</td>
<td>417</td>
</tr>
<tr>
<td>Max. total district heating output</td>
<td>MWth</td>
<td>400</td>
</tr>
<tr>
<td>Net efficiency Unit 10 (river water cooling)</td>
<td>%</td>
<td>59.6</td>
</tr>
<tr>
<td>Net efficiency Unit 20 (cooling tower)</td>
<td>%</td>
<td>58.7</td>
</tr>
<tr>
<td>Fuel conversion efficiency (400 MW district heating)</td>
<td>%</td>
<td>81</td>
</tr>
</tbody>
</table>
Input/output of CCPP Mellach

- Synergies: existing infrastructure
- River water
- Electricity lines
- District heat
- Consumables
- Cooling system
- Cooling tower
- Fuel gas

POWER-GEN EUROPE 2013, ANDRITZ Energy & Environment
Performance data for Mellach power plant

Key Data

UNIT: 2 x SCR for CCPP Mellach/AUSTRIA
CUSTOMER: VERBUND Thermal Power
Start-Up: 2011/12

TECHNOLOGY/SUPPLY:
2 x SCR integrated into HRSG

Fuel: natural gas

Capacity: total 838 MWel

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flue Gas Flow:</td>
<td>2 x 2,110,000 m³/h (std<sub>wet</sub>)</td>
</tr>
<tr>
<td>NO<sub>x</sub> inlet:</td>
<td>61.6 mg/m³ (std<sub>dry</sub>, 15% O<sub>2</sub>)</td>
</tr>
<tr>
<td>NO<sub>x</sub> outlet:</td>
<td><20 mg/m³ (std<sub>dry</sub>, 15% O<sub>2</sub>)</td>
</tr>
<tr>
<td>NH<sub>3</sub>- slip:</td>
<td><10 mg/m³ (std<sub>dry</sub>, 0% O<sub>2</sub>)</td>
</tr>
<tr>
<td>Reducer:</td>
<td>Anhydrous ammonia</td>
</tr>
</tbody>
</table>
Content

- General
- Products of ANDRITZ air pollution control
- Best Available Techniques (BREF document)
- Emission Limits for CCPP in Europe
- Performance data for Mellach power plant
- **SCR for Mellach Power Plant**
- Selected References
- Summary
SCR for Mellach Power Plant

- With the following reactions on the catalyst surface

 - $4 \text{NO} + 4 \text{NH}_3 + \text{O}_2 \rightarrow 4 \text{N}_2 + 6 \text{H}_2\text{O}$
 - $2 \text{NO}_2 + 4 \text{NH}_3 + \text{O}_2 \rightarrow 3 \text{N}_2 + 6 \text{H}_2\text{O}$

- Decomposition of dioxins and furans (PCDD, PCDF)

- Side reaction

 - $2 \text{SO}_2 + \text{O}_2 \rightarrow 2 \text{SO}_3$
SCR for Mellach Power Plant

AIG design:
- Low flue gas pressure loss (< 0.3 mbar)
- 32 adjustable AIG sections to meet the required NH₃/NOx molar ratio upstream catalyst
- Number of nozzles optimized according to distance between AIG and catalyst via CFD

Ammonia distribution upstream catalyst for two control zones (worst cases) acc. CFD study:

<table>
<thead>
<tr>
<th>Description</th>
<th>Load</th>
<th>Location</th>
<th>Result</th>
<th>Minimum requirement acc. catalyst supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH₃ concentration deviation (Case 2A: control zone A1)</td>
<td>100%</td>
<td>1st catalyst layer inflow cross sectional area</td>
<td>100% of the values within a range of -6.9% / +6.8% (CoV = 2.8%)</td>
<td>80% of the values within a range of +/-10% and the remaining 20% of the values within a range of +/-20%</td>
</tr>
<tr>
<td>NH₃ concentration deviation (Case 2B: control zone A5)</td>
<td>100%</td>
<td>1st catalyst layer inflow cross sectional area</td>
<td>100% of the values within a range of -4.9% / +8.1% (CoV = 2.1%)</td>
<td>80% of the values within a range of +/-10% and the remaining 20% of the values within a range of +/-20%</td>
</tr>
</tbody>
</table>

CoV = coefficient of variation = standard deviation / mean value
SCR for Mellach Power Plant

AIG design:
- Co-current injection of ammonia
- Duct dimension 21,9 x 11,6 m
- 32 adjustable AIG sections of approx. 8 m² each
- Distance from AIG to catalyst inlet > 2,5 m

Standard deviation of NH₃-concentration versus distance between AIG and catalyst (based on CFD study)
SCR for Mellach Power Plant

AIG tuning flaps:

- Upper header of AIG
- Lower header of AIG
- Mixture gas fans

Source: Fotostudio Pachernegg, Graz
SCR for Mellach Power Plant

Catalyst design:
- Operation flue gas temperature from 300 to 350 °C
- GT operation with natural gas only
- Performance lifetime 24000 operational hours
- Catalyst pitch is 3 mm (50 x 50 cells per element)
- Catalyst length 285 mm
- Catalyst pressure loss < 3,4 mbar
- 132 (12 x 11) modules installed on steel frame, supported on top of HRSG
- 6 modules (12 x 6) are stapled on each other and screwed, then intermediate supporting frame is installed for further 12 x 5 modules
- Space between modules and HRSG duct is sealed by insulation pads, all modules are screwed together
- Space is kept free upstream for additional 50% catalyst
SCR for Mellach Power Plant

AIG erection (8 pieces per unit):
SCR for Mellach Power Plant

Catalyst module installation:

Insulation pad
SCR for Mellach Power Plant

Catalyst module erection (132 modules per Unit):
DeNOx System for HRSG

Catalyst modules installed:

- Net measuring point
SCR for Mellach Power Plant

Ammonia dosing station:
SCR for Mellach Power Plant

Commissioning of unit 10 & 20:

- NOx downstream GT far below design figure (design 61 mg/m³ NOx, dry, 15 vol% O₂)

- CO downstream GT at base load at 2 mg/m³ far below emission limit (35 mg/m³)

- NO₂/NOx ratio measured approx. 20% at 100 % GT load

- AIG with 32 adjustable fields, NOx profile can be adjusted accurately

- Ammonia flow control valve was changed to smaller dimension due to much lower ammonia mass flow than actually designed
SCR for Mellach Power Plant

Commissioning of unit 10:

Standard deviation 1.5 mg/nm³ NOx

Standard deviation 0.7 mg/nm³ NOx
First year operating experience with SCR CCPP Mellach

- NOx-value stable below 20 mg/Nm³
 - at 100 % load
 - over entire ambient temperature range

- NOx-value can be kept below 20 mg/Nm³ down to approx. 50 % load (min. load)

- pressure drop: approx. 3.2 mbar at 100% load (=> power output reduction due to pressure drop approx. 0.3 MWel / 0.1 %)
Content

- General
- Products of ANDRITZ air pollution control
- Best Available Techniques (BREF document)
- Emission Limits for CCPP in Europe
- Performance data for Mellach power plant
- SCR for Mellach power plant
- Selected References
- Summary
Selected SCR References

PS Leopoldau (Austria)
Capacity: 170 MWel
Fuel: Natural gas
Flue gas volume: 1,400,000 Nm³/h
NOx content: 170 mg/Nm³
Removal efficiency: 80 %
Start-up: 1988

PS Donaustadt (Austria)
Capacity: 350 MWel/ 250 MW district heating
Fuel: Natural gas
Flue gas volume: 1,940,000 Nm³/h
NOx content: 68 mg/Nm³
Removal efficiency: 50 %
Start-up: 2001
Selected SCR References

CCPP Mellach (Austria)

- Capacity: 838 MWel
- Fuel: Natural gas
- Flue gas volume: 2 x 2,110,000 Nm³/h
- NOx content: 61.6 mg/Nm³
- Removal efficiency: 67%
- Start-up: 2012

PS GaoAnTun (China)

- Capacity: 836 MWel
- Fuel: Natural gas
- Flue gas volume: 2 x 2,055,000 Nm³/h
- NOx content: 51.3 mg/Nm³
- Removal efficiency: 85%
- Start-up: 2013 / 2014
Content

- General
- Products of ANDRITZ air pollution control
- Best Available Techniques (BREF document)
- Emission Limits for CCPP in Europe
- Performance data for Mellach power plant
- SCR for Mellach power plant
- Selected References
- Summary
SCR technology for NOx control—perfect APC solution for HRSG’s, Summary:

- Due to the strict NOx emission limit of 20 mg/m³n and the NOx raw gas guarantee given from GT supplier it was necessary to implement a SCR system in Mellach power station.

- NOx raw gas concentration from GT are much lower than guaranteed values from SIEMENS, SCR system in Mellach is oversized but still necessary.

- Latest AIG and catalyst design leads to lowest pressure loss of SCR system (<3.2 mbar at full load), this results in a loss of power output of not more than approx. 0.3 MW_{el}.

- Distance between AIG and catalyst can be reduced from 3 m down to 2.5 m for further CAPEX reduction.

- CCPP can meet lowest emission limits (CO < 2mg/m³n and NOx < 20 mg/m³n) and efficiency is still kept high, helping to cut down CO₂ emission (60 % less CO₂ emission compared to coal fired power plant).
ANDRITZ Energy & Environment GmbH

Contact:
DI Johannes Lind
Tel.: +43/316/501-373
johannes.lind@andritz.com
www.andritz.com/ae
Legal Disclaimer

All data, information, statements, photographs, and graphic illustrations contained in this presentation are without any obligation to the publisher and raise no liabilities to ANDRITZ AG or any affiliated companies, nor shall the contents in this presentation form part of any sales contracts, which may be concluded between ANDRITZ GROUP companies and purchasers of equipment and/or systems referred to herein.

© ANDRITZ AG 2012. All rights reserved. No part of this copyrighted work may be reproduced, modified or distributed in any form or by any means, or stored in any database or retrieval system, without the prior written permission of ANDRITZ AG or its affiliates. Any such unauthorized use for any purpose is a violation of the relevant copyright laws.