Fundamentals of NO_X Control for Coal-Fired Power Plants

CastleLight Energy Corp

Re-Engineering Coal-Fired Power Boilers for Improved Efficiency, Low Pollutant Emissions and Reduced Operating Cost

By Keith Moore - President

www.Castle-Light.com

DISCLAMER Information herein is best estimates of the presenters and subject to change. No guarantees or warrantees implied or given.

© Copyright 2016 _

CastleLight Energy Corp

1

CastleLight Energy Corp. A Technology Management Company

- Couples a fast, low cost Coal Beneficiation process
- With a **Hybrid of Coal Gasification** for strong SO_2 and NO_x emissions control and high efficiency for coal-fired power plants.
- Technology evolved from coal combustion research at **Rockwell** International.
- Some \$60 million in Utility peer reviewed R&D, field demonstrations & commercial programs
 - Patented Technology
 - **CastleLight Energy provides Power Plant Re-Engineering:**
 - Overall Technology Management
 - System Engineering, Design, CFD & PEPSE Analysis
 - All Hardware, Equipment, Instrumentation, and Controls including supervision of customer installation.
 - Commercial Warrantee & Technology License

OBSERVATION

Technology does not evolve.....it "LEAP FROGS"

When was the last time you flew on a commercial piston engine airplane?

© Copyright 2016 _____ CastleLight Energy Corp

Objective

- Mcllvian seeks NO_x control technologies for Pacific Corp's coal-fired tangential boilers at Hunter and Huntington stations.
- NO_x emissions target: 0.07 lb/MMBTU (~50 ppm)
- It is problematic that these low NO_x emission levels can be met with conventional technology.
- Estimates for an SCR/ammonia system: ~\$215/kW
- CastleLight Energy suggest a review of the fundamentals of NO_x formation and its destruction.

NO_x Formation Fundamentals

- In coal combustion, the nitrogen in the coal (~ 1%) is the major source of NO_x (~85%).
- In the late 70's, Dr. Axworthy at Rocketdyne showed that the nitrogen in the coal forms NO_x, or the precursors of NO_x - such as ammonia (NH₃), and cyanide (HCN), at the <u>same time and place as the carbon is</u> <u>oxidized</u>.
- Further, he showed that there is no way that that this fuel-NO_x can be avoided;

- such as low temperature combustion, as used when firing natural gas to avoid thermal NO_x formation.

- However, observations of Fluid Bed Combustion (FBC) showed that something was effectively reducing the fuel-NO_x levels in the bed.
- A theory evolved look for a <u>NO_x destruct catalysis</u> in the combustion step.

NO_x Destruction

- A lab furnace was set up to duplicate the FBC combustion bed conditions.
- The minerals and compounds found in in coal were exposed to NO_x under combustion conditions and any change in NO_x inlet / outlet levels were noted.
- It was determined that calcium sulfide (CaS) is a gang buster NO_x destruct catalysis, especially under the fuel-rich, high-temperature conditions such as found in an FBC bed.
- <u>This was a remarkable discovery</u>, as Rockwell was developing a new coal-fired burner for SO₂ control; fuel-rich combustion featuring sulfur capture with calcium (limestone CaCO₃).
- Calcium sulfide is a very reactive compound; it quickly oxidizes to H₂S in air, so it must be created when needed.
- In fuel-rich combustion (no oxygen) sulfur reacts with calcium to form CaS. a solid particle even at high temperatures.
- We observed that the CaS destroyed fuel-NOx to "single digit ppm levels" right in the initial combustion step - 20 to 30 inches from the burner face.
- Rockwell now had a new coal-fired burner concept with SO₂ and synergistic NO_x control.
- We now describe it as the **CLEAN COMBUSTION SYSTEM**.

© Copyright 2016 _____

CastleLight Energy Corp

Schematic

Hybrid of Coal-Gasification & OFA Combustion (SO₂ and NO_x control)

CCS Process Steps

$SO_2 \& NO_x$ emissions control right in the combustion step

- Coal is fired with very limited hot air in an entrained-flow gasifier
- In the initial combustion step, the carbon consumes all the oxygen and creates a hot, fuel-rich gas and frees the sulfur from the coal,
- Limestone (CaCO₃) provides calcium as CaO
- Sulfur reacts with CaO to form calcium sulfide (CaS) a solid particle at these temperatures,
- CaS destroys the NO_x (NO_x < 10 ppm) to form elemental nitrogen (N₂)
- At the high temperatures, coal ash (alumina & silica) mix with the CaS and melts to form a slag product; the sulfur is thereby encapsulated in the slag
- About half the slag drains from the chamber to a water quench slag tank.
- Clean red-hot gases enter the furnace & cool to < 2300 F, where thermal NO_x formation is frozen. Any slag particles solidify to a fine fly ash
- Staged over-fire air is then carefully added to complete combustion in the furnace to CO₂ & H₂O and to avoid any thermal NO_x formation.
- The hot exhaust gases exit the furnace to the back pass at the original design conditions.

LNS-CAP Facility

ESSO Site, Cold Lake, Alberta Canada 50 mmBtu/hr – 3T/hr PRB Coal; 1992

© Copyright 2016

_CastleLight Energy Corp.

© Copyright 2016 _____

CastleLight Energy Corp.

© Copyright 2016 _____

CastleLight Energy Corp.

Boiler Radiant Section

View Forward: OFA Pipes and Burner (note the white ash)

© Copyright 2016 _

_CastleLight Energy Corp.

Demonstrated Emissions

 $SO_2 \sim 0.2$ lb./mmBtu & $NO_x \sim 0.15$ lb./mmBtu (110 ppm)

ESSO LNS-CAP Facility, Cold Lake, Alberta, Canada

CCS-Stoker[®] Retrofit 30 MW (Thermal) - 125 mmBtu/hr – 5 T/hr Coal ;2008

© Copyright 2016 _____

CastleLight Energy Corp.

Gasification Chamber Installation

Hybrid Coal Gasifier Chamber Installation on Boiler

- Shop fabricated membrane wall, studded and refractory lined for coal gasification.
- Natural circulation water cooling connection to the boiler drums

CastleLight Energy Corp

CCS-Stoker® Operation Observations Operation @ MCR – NO_x < 88 ppm

© Copyright 2016 _____

CastleLight Energy Corp

CCS-Stoker[®] Retrofit Performance Preliminary Results – Full Load Operation

Item	Stoker Base Line Test	Preliminary CCS Performance	% Change from Base Line
SO ₂ Stack Emissions (Ib/MMBtu)	1.80	0.72	- 67.0 %
NOx Stack Emissions (lb/MMBtu)	0.50	0.14 (88 ppm)	- 72.0 %
Boiler Efficiency	77.0	86.9	+ 12.8 %
CO ₂ Emissions - Ton/yr GW credits (% Reduction)	94,019	73,720	20,300T/y (- 21.6 %)
Project Cost Recovery (from firing lower cost coal)		~ 3 years	

CastleLight Energy Corp

Example: Opposed-Wall Fired Boiler 500 MW – 5 Mills & 24 PC Burners (Remove Burners & Wind box)

Re-Engineered Wall-Fired Boiler Install 6 Gasification Chambers & OFA, 24 Burners, 6 Bag houses

Re-Engineered Tangential[™] Boiler Example: 100 MW

CCS Features

Improved Operability, Availability & Reliability

- All equipment off-the-shelf & familiar to the operators
 - Safe, stable burner operation,
 - Same startup, shutdown and turndown as the PC plant
- Bottom Ash (slag) removed before furnace
 - low particulate/ash load; clean furnace, less soot blowing
- Sulfur removed from furnace gases near-zero SO₃:
 - Allows for lower furnace exit temperatures
 - Minimize water-wall wastage & corrosion,
 - Can use hot boiler exhaust for pulverizer sweep air:

 - Dry the coal reject moisture
 Improves coal pulverizer safety from fire & puffs (low O₂)
- Improved Boiler Efficiency (2 to +10%)
 - Reduce CO₂ emissions
 - High combustion efficiency (LOI < 1%)
- Limestone is only "chemical" required
- No waste water for disposal
- Construction permit with waiver of NSPS & PSD
 - No New Source Review (NSR) Trigger!

CastleLight Energy Corp

CCS Summary (Key Strategic Issues)

- From Fundamental Combustion Theory to Commercial Operation
- Meets EPA's new stringent regulations for SO_2 , NO_x & now CO_2
- Allow power plant upgrade with waiver of NSPS & PSD No NSR
- Low Retrofit Cost; maintains older, smaller plants competitive
- Lower coal consumption reduce plant operating cost
- Improve plants capacity factor & dispatch
- Fits within plant & boiler site footprint
- Ash products have value (sell bottom ash & fly ash)
- No hazardous or toxic chemicals required

It's ADVANCED COAL GASIFICATION TECHNOLOGY!

CastleLight Energy Corp. Power Plant Re Engineering Program

For Technical Presentations and Plant Surveys :

Contact CastleLight Energy Corp.

Keith Moore - President Phone: 805-551-0983 E-mail: <u>keith@castle-light.com</u> Visit. Web Site: www.Castle-light.com

Visit Web Site: <u>www.Castle-Light.com</u>