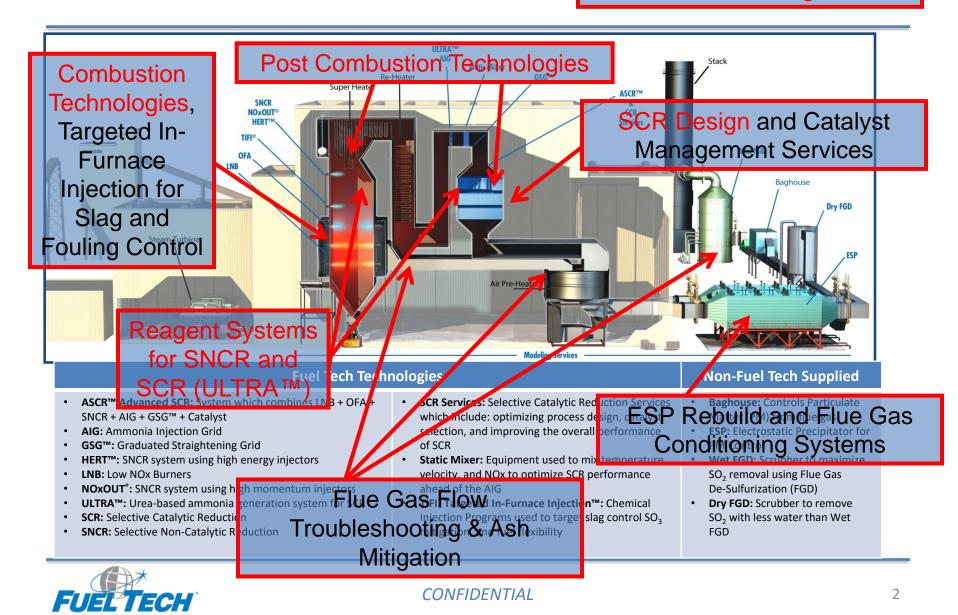


July 14, 2016


I-NOx[™] Integrated NOx Reduction Technology

McIlvaine PacifiCorp Webinar No. 1

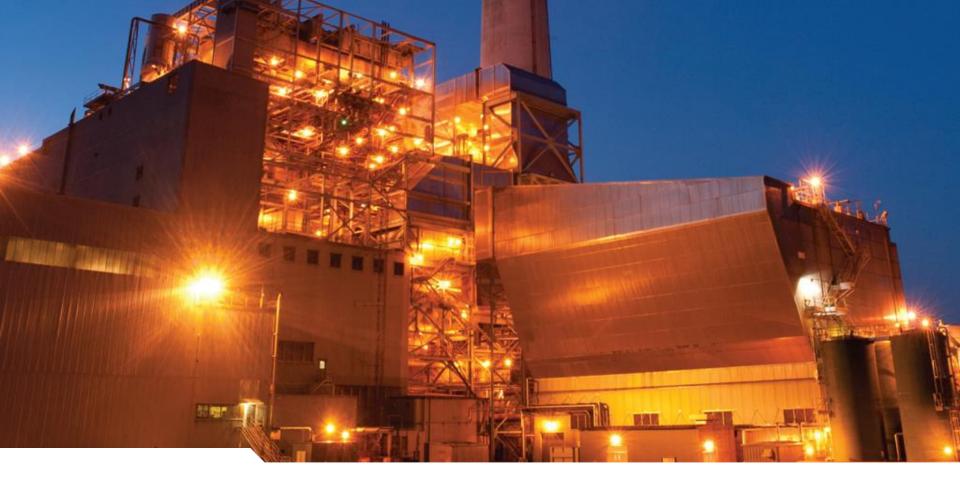
COMMERCIAL PRODUCTS

Advanced Modeling Services – All Technologies

FUEL TECH'S I-NOx TECHNOLOGY

- Combustion Modifications
 - Low NOx Burners and Over Fire Air for Wall Fired Units
 - Combustion Modifications and Separated Over Fire Air for T-Fired Units
 - Additional Modifications and Combustion Tuning to Reduce NOx Further
- Selective Non-Catalytic Reduction of NOx (SNCR)
 - In-Furnace Injection Furnace is Reactor
 - Low Capital Cost
 - Additional NOx Reduction / Optimized Reagent Consumption when Combined w/ASCR
- ASCR[™] Advanced Selective Catalytic Reduction of NOx
 - Single Layer of Catalyst Where Applicable
 - In-Duct Arrangement with Proper Flow and Ash Distribution
- Combining Multiple Technologies Requires Technical "Know-How" and Commercial Experience

I-NOx CHALLENGES AND BENEFITS


- Design Must Be Truly Integrated:
 - SNCR Design Must Account for Combustion Output and Varying Operational Conditions of Typical Boiler
 - SCR Design Must Account for SNCR Output and Varying Operational Conditions of the In-Furnace Combustion and SNCR Systems as Boiler Conditions Fluctuate
- Challenges:
 - Physical Space Limitations for In-Duct Reactor
 - Highly Maldistributed NOx and NH₃ from Boiler
 - Increased SCR Velocity Due to Restrictions in Catalyst Installation Space
 - Both Require Expert Knowledge in the Design of All of the Technologies being combined
 - Computational and Experimental Fluid Dynamics Modeling Coupled with Flow Distribution Device Optimization
- Benefits:
 - Integrated Technologies Provide Lower Capital Cost w/ NOx Reductions Ranging from 50 80%
 - Optimized Reagent Consumption, Lower dP, Reduced Catalyst Replacement, Lower SO₂-SO₃ Oxidation, Lower Minimum Operating Temperatures, Etc.

FUEL TECH I-NOx COMMERCIAL EXPERIENCE

- Reliant Energy Seward Station (1999)
 - 147 MW T-Fired Unit
 - SNCR + SCR, 55% NOx Reduction
- AES Greenidge (2005)
 - 115 MW T-Fired
 - Significantly Improved Chemical Utilization w/ASCR
 - Combustion Modifications + SNCR + ASCR, >60% NOx Reduction
- China Light and Power Castle Peak (2010)
 - Four (4) 680 MW Wall Fired Units
 - Boosted OFA, ASCR, and ULTRA Urea Conversion
 - ASCR Provided 40% NOx Reduction
- China Steel Corporation, Taiwan (2014)
 - Three (3) 80 MW T-Fired Units
 - Four (4) Sub-Systems Deployed Combustion Modifications, New SOFA System, SNCR, and ASCR
 - > 78% Total NOx Reduction

Question & Answer - Thank You

