

I-NOx[™] Integrated NOx Reduction **Technology**

McIlvaine PacifiCorp Webinar No. 3

FUEL TECH'S I-NOx TECHNOLOGY

- Combustion Modifications
 - Low NOx Burners and Over Fire Air for Wall Fired Units
 - Combustion Modifications and Separated Over Fire Air for T-Fired Units
 - Additional Modifications and Combustion Tuning to Reduce NOx Further
- Selective Non-Catalytic Reduction of NOx (SNCR)
 - In-Furnace Injection Furnace is Reactor
 - Low Capital Cost
 - Additional NOx Reduction / Optimized Reagent Consumption when Combined w/ASCR
- ASCR™ Advanced Selective Catalytic Reduction of NOx
 - Single Layer of Catalyst Where Applicable
 - In-Duct Arrangement with Proper Flow and Ash Distribution
- Combining Multiple Technologies Requires Technical "Know-How" and Commercial Experience

ADVANCED SCR (ASCR™)

- Combination of SNCR and "High Performance" SCR
- Optimized SNCR
 - Better Reagent Utilization
 - Higher Removal Efficiency
 - Higher NH₃ Slip
 - Optimized SCR Utilizing Less Catalyst than Traditional SCR
 - Single Layer
 - Maintain the proper flue gas flow criteria
- Overall Reductions in Excess of 80%
- 60 85% NOx Reduction at 40 to 70% of Full Scale SCR Cost
- Site Specific Application

I-NOx CHALLENGES AND BENEFITS

Design Must Be Truly Integrated:

- SNCR Design Must Account for Combustion Output and Varying Operational Conditions of Typical Boiler
- SCR Design Must Account for SNCR Output and Varying Operational Conditions of the In-Furnace Combustion and SNCR Systems as Boiler Conditions Fluctuate

Challenges:

- Physical Space Limitations for In-Duct Reactor
- Highly Maldistributed NOx and NH₃ from Boiler
- Increased SCR Velocity Due to Restrictions in Catalyst Installation Space
- Both Require Expert Knowledge in the Design of All of the Technologies being combined
- Computational and Experimental Fluid Dynamics Modeling Coupled with Flow Distribution Device Optimization

Benefits:

- Integrated Technologies Provide Lower Capital Cost w/ NOx Reductions Ranging from 50 80%
- Optimized Reagent Consumption, Lower dP, Reduced Catalyst Replacement, Lower SO₂-SO₃ Oxidation, Lower Minimum Operating Temperatures, Etc.

FUEL TECH I-NOx COMMERCIAL EXPERIENCE

- Reliant Energy Seward Station (1999)
 - 147 MW T-Fired Unit
 - SNCR + SCR, 55% NOx Reduction
- AES Greenidge (2005)
 - 115 MW T-Fired
 - Significantly Improved Chemical Utilization w/ASCR
 - Combustion Modifications + SNCR + ASCR, >60% NOx Reduction
- China Light and Power Castle Peak (2010)
 - Four (4) 680 MW Wall Fired Units
 - Boosted OFA, ASCR, and ULTRA Urea Conversion
 - ASCR Provided 40% NOx Reduction
- China Steel Corporation, Taiwan (2014)
 - Three (3) 80 MW T-Fired Units
 - Four (4) Sub-Systems Deployed Combustion Modifications, New SOFA System, SNCR, and ASCR
 - > 78% Total NOx Reduction

