

World's Largest Power Plant Dry Cooling Systems Overview

Jessica Shi, Ph.D.

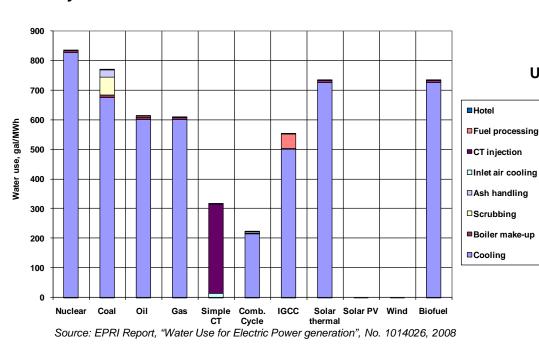
Sr. Project Manager
Technical Lead of Water Use and Availability
Technology Innovation Program

EPRI Brown Bag Lunch Seminar Palo Alto, CA Sep. 3, 2013

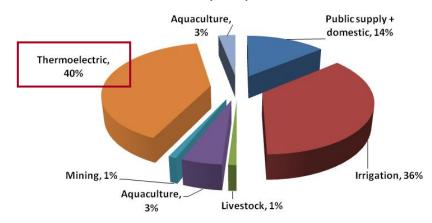
Outline

- Overview
 - Water Use and Availability Technology Innovation Program
 - Power Plant Cooling
 - South Africa and Eskom

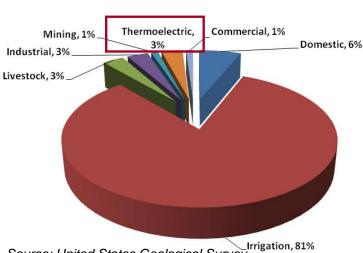
Dry Cooling at Four Eskom's Power Stations in


South Africa

- EPRI-NSF Collaboration
- Conclusion



Industry Specific Needs: Strategic Water Management


- Thermal-electric power plants withdraw 40% and consume 3% of US fresh water.
- 90% of power plant water demand is due to cooling systems.

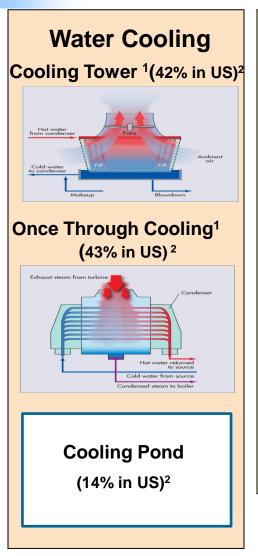
U.S. Freshwater Withdrawal (2005)

U.S. Freshwater Consumption (1995)

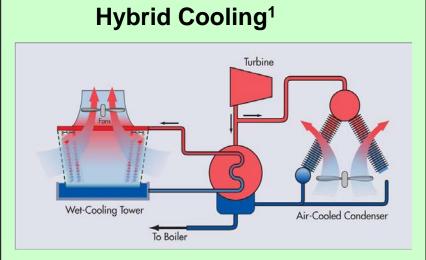
Source: United States Geological Survey

Water Use and Availability Technology Innovation Program Overview and Objective

- Initiated in early 2011
- Collected 168 proposals/white papers from 3 solicitations
 - ✓ Feb., 2011
 - ✓ June, 2012
 - ✓ May, 2013 (jointly with NSF).
- Funded 12 projects



Objective

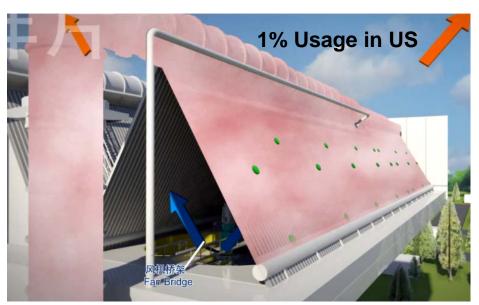

Seek and develop "out of the box", game changing, early stage, and high risk cooling and water treatment ideas and technologies with high potential for water consumption reduction.

What Cooling System Options are Currently Deployed in the Industry?

Dry Cooling¹ **Direct Dry Cooling:** Air Cooled Condenser (1%Usage in US)² **Indirect Dry Cooling 3:** INDIRECT DRY-COOLING SYSTEM

Increasing demand for dry cooling in water scarcity regions.

- 1. EPRI Report, "Water Use for Electric Power generation", No. 1014026, 2008.
- 2. Report of Department of Energy, National Energy Technology Laboratory, "Estimating Freshwater Needs to Meet Future Thermoelectric Generation Requirements", DOE/NETL-400/2008/1339, 2008
- 3. http://www.globalccsinstitute.com/publications/evaluation-and-analysis-water-usage-power-plants-co2-capture/online/101181


Air Cooled Condenser Pros/Cons

Pros:

- Dry system
 - Zero water consumption and water supply needed

Cons:

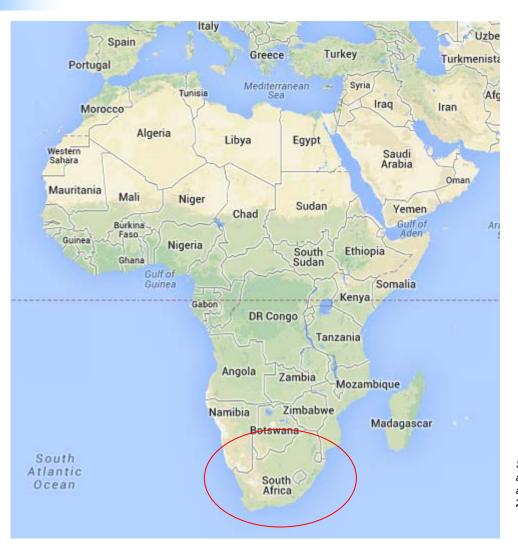
- Up to 10% less power production on hot days due to higher steam condensation temperature compared to CT and OTC systems
- Up to five times more expensive than cooling tower systems
- Noise, wind effect, and freezing in cold days

Click Here for Animation

Source:

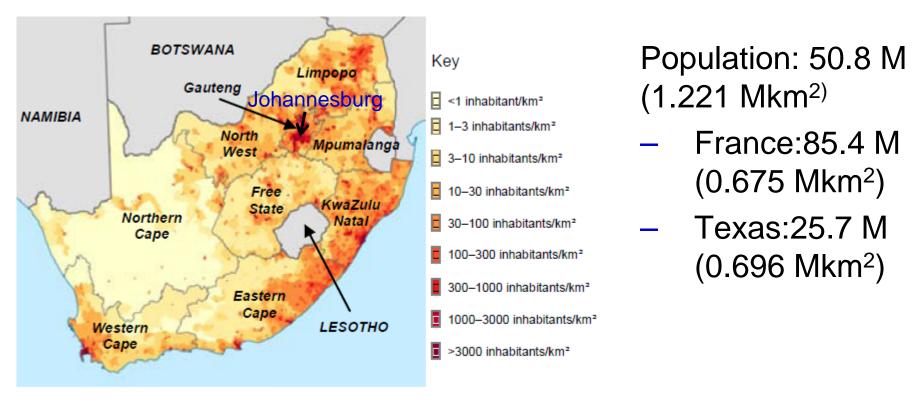
EVAPCO BLCT Dry Cooling

Challenge: Reduce steam condensation temperature >> more power production


Outline

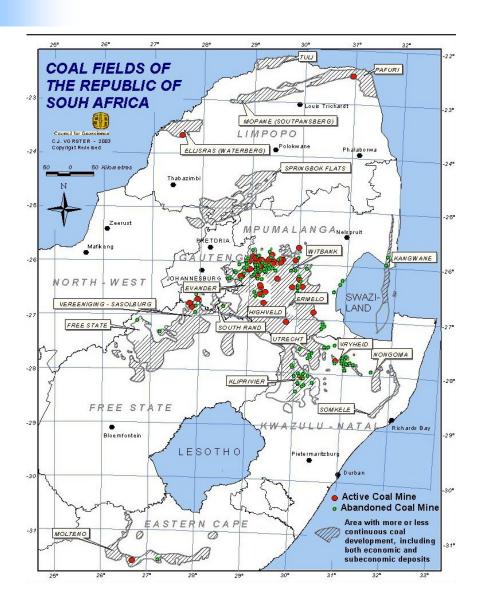
- Overview
 - Water Use and Availability Technology Innovation Program
 - Power Plant Cooling
 - South Africa and Eskom
- Dry Cooling Condensers at Four Eskom's Power Stations in South Africa
- EPRI-NSF Collaboration
- Conclusion

Where is South Africa?

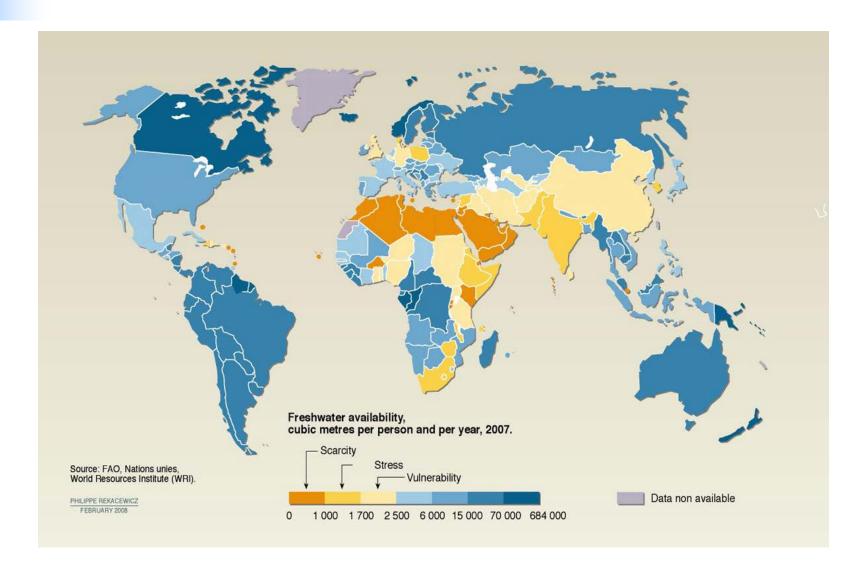


Medium-Sized Country: More than 1.221 Mkm²

- 2 X of France (0.675 Mkm²)
- 2 X of Texas (0.696 Mkm²)


South Africa Population Density

Map of population Density in South Africa
Data Source - Stats SA; map - Wikipedia


South African Coalfields Locations

- World's 5th largest coal producer
- World's 3rd largest coal exporter

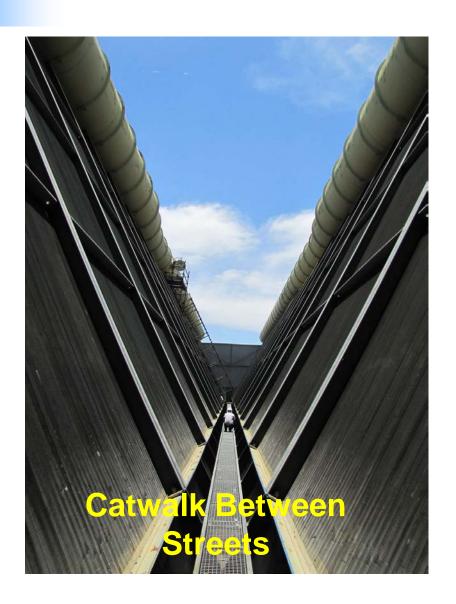
Water Stressed South Africa

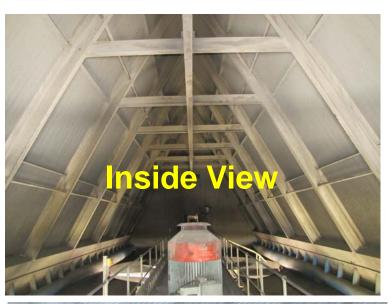
Eskom Introduction

- State-owned electricity supply utility
- Generation total capacity of 44.145 GW:
 - 95% of electricity used in South Africa
 - 45% of electricity used in Africa
- Generation Fleet:
 - 13 Coal Fired
 - 1 Nuclear
 - 4 Hydro & Pumped Storage
 - 4 Gas Turbines

Eskom Power Stations

Air Cooled Condenser at Matimba Power Station (6x 665 MWe = 4.11 GWe)

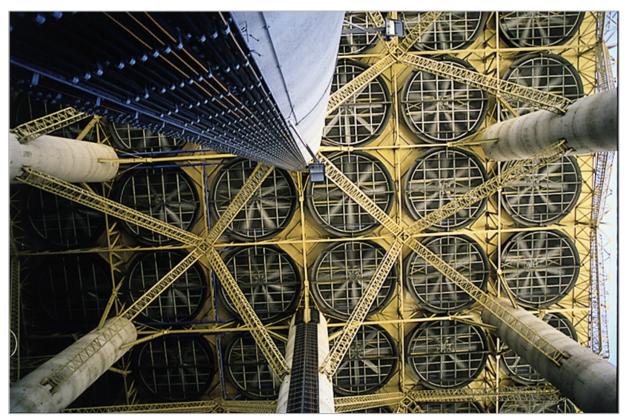

- The largest operating direct dry cooling system in the world
- Cooling system commissioned by GEA in1987



Top View of Air Cooled Condensers at Matimba Power Station

Steam Pipe 1 Street Water **Pipes**

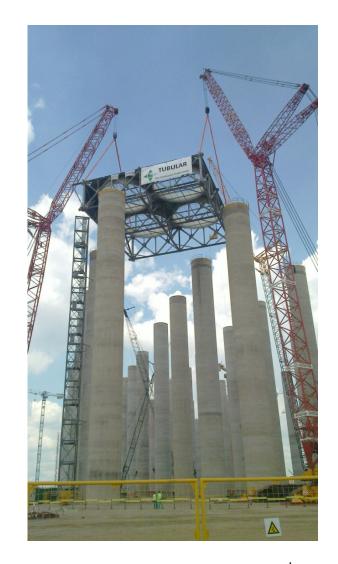
Air Cooled Condensers at Matimba Power Station



Air Cooled Condenser Fans at Matimba Power Station – 6 fans/street

Air Cooled Condensers at Medupi Power Station (6 X 800 MWe = 4.8 GW)

- Medupi means 'rain that soaks parched lands, giving economic relief'.
- Contract awarded for in May 2007 (Cooling by GEA)
- Unit 1 to be in operation by end of 2013 and the other units to be commissioned at approximately 8-month intervals



Major Improvements at Medupi Power Station

- Based on Lessons Learned from Matimba

	Matimba	Medupi
Generation (MWe)	6 X 665 MWe	6 x 794 Mwe
Year Built/Awarded	1987	2007
Cooling Vender	GEA	GEA
Fan Bottom Height, m	45	54
Street Length, m	72	100
Length Across Steets/Unit, m	82	112
Steam Tube Length, m	9.4	10.4
Number of Streets/Unit	8	8
Number of Fans/Street	6	8
Number of Steam Tube Rows	2	2
Fan Diameter, m	9.144	10.36

Source: Email communication with Dr. Johannes Pretorius of Eskom with permission for unlimited public release

More Improvement at Medupi – Wind Effects Minimization

 Extended spacing between the air cooled condensers and turbine hall to minimize wind issue.

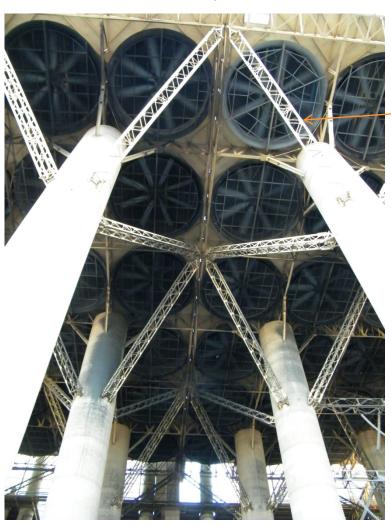
Matimba (26 years old)

Medupi (under construction)

More improvements - Ease of Fan Maintenance

Added screens below the fan

- Access & reachability for maintenance on fans
- Plant & personnel safety fatigue failures on fans



Beam – Fan Platform Support Difference

Matimba (26 years old)

Medupi (Under Construction)

- More columns per unit area
- No more angled metal frames

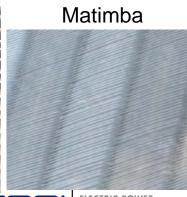
Unique Steam Duct Splitting Arrangement at Medupi Power Station

Matimba (26 years old)

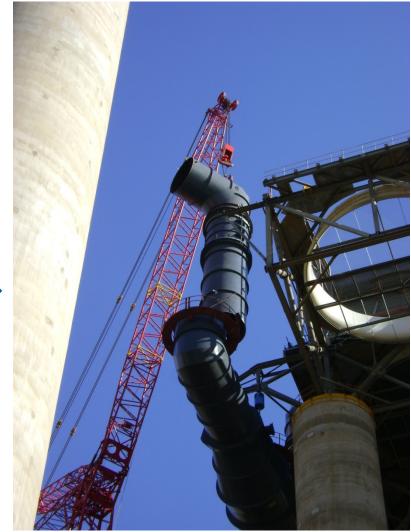
Medupi

Air Cooled Condensers at Kusile Power Station (6 X 800 MWe = 4.8 GWe)

- Contract awarded in May 2008 (Cooling by SPX)
- Unit 1 in operation in 2014 and the other units to be commissioned at approximately 8-month intervals

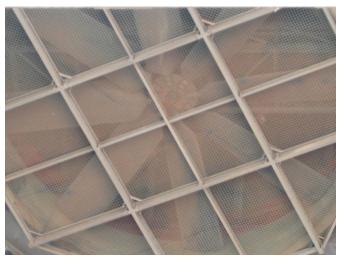


Air Cooled Condenser Modules at Kusile Power Station



Steam Pipe being Installed

Fan Casing being Installed



Fan Shape Comparison

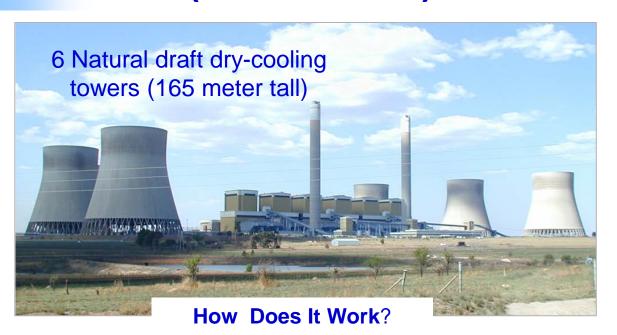
Matimba (26 years old)

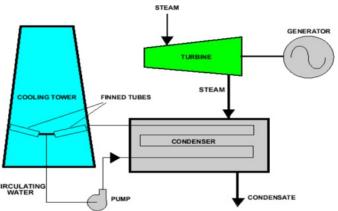
Medupi

MatimbaMedupiKusileFan Diameter, m9.14410.3610.36

Source: Email communication with Dr. Johannes Pretorius of Eskom with permission for unlimited public release

Kusile


Cooling System Comparison


	Matimba	Medupi	Kusile
Generation (MWe)	6 X 665 MWe	6 x 794 MWe	6 x 798 MWe
Year Built/Awarded	1987	2007	2008 (approx.)
Cooling Vender	GEA	GEA	SPX
Fan Bottom Height, m	45	54	60
Street Length, m	72	100	100.8
Length Across Steets/Unit, m	82	112	112
Steam Tube Length, m	9.4	10.4	11
Number of Streets/Unit	8	8	8
Number of Cells/Street	6	8	8
Number of Steam Tube Rows	2	2	3
Number of Blades/Fan	8	8	8 on perimeter fans, 9 on central fans

Source: Email communication with Dr. Johannes Pretorius of Eskom with permission for unlimited public release

Indirect Dry Cooling System at Kendal Power Station (6 x 686 MWe)

Data

	Kendal		
Cooling Type	Indirect Dry Cooling		
Generation (MWe)	6 X 686 MWe		
Year Commissioned	1988		
Cooling Tower Height, m	165		
Cooling Tower Base Diameter, m	161		
Heat Exchanger Platform Height Relative to the Ground Level, m	19.7 to 27.3		
Vender	SPX		
Design Conditions			
Number of Heat Exchangers (HXs)	500		
Number of Water Tubes/HX	264		
Number of Sectors	11		
Number of Water Tube Rows	4		

INDIRECT DRY-COOLING SYSTEM

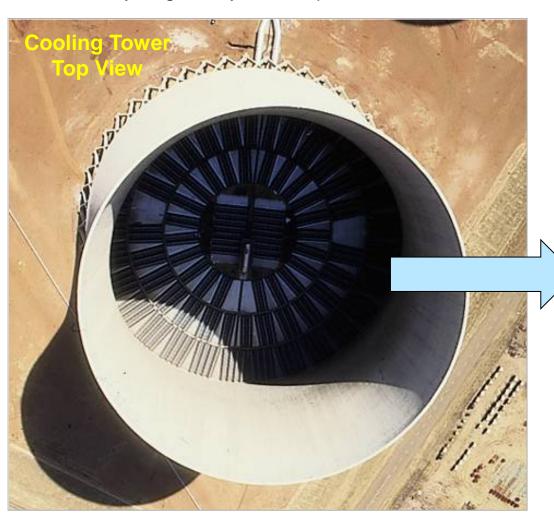
Source: http://www.globalccsinstitute.com/publications/evaluation-and-analysis-water-usage-power-plants-co2-capture/online/101181

Pros and Cons of Indirect Dry Cooling

Compared to air cooled condensers (direct dry cooling):

Pros

- No fans
- Lower operational costs
- Lower maintenance costs
- Less wind effect
- Possible option for nuclear power plants


Cons

- Higher capital costs
- Higher life-cycle costs

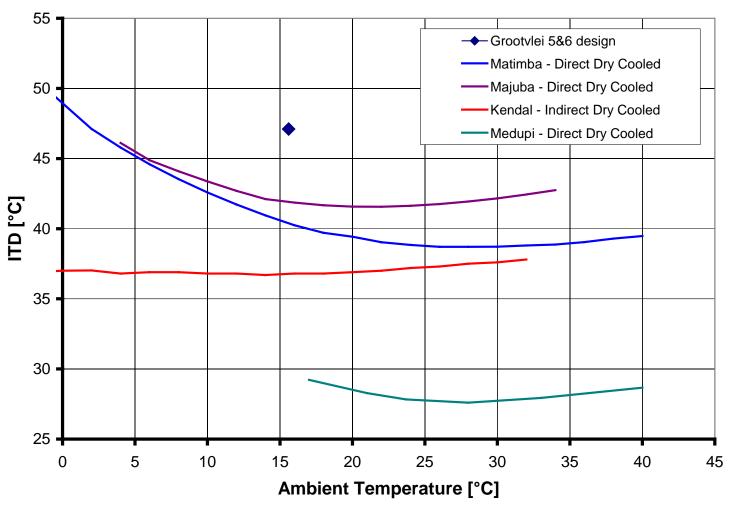
Kendal Power Station (6 x 686 MWe)

Currently largest dry-cooled power station worldwide

A – frame Air Coolers.

More Air Cooler Views at Kendal Power Station

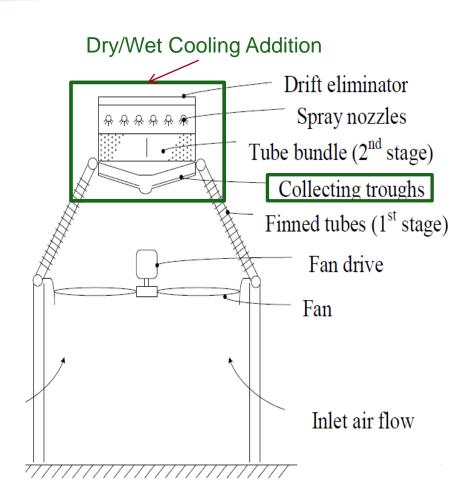
Bottom Views

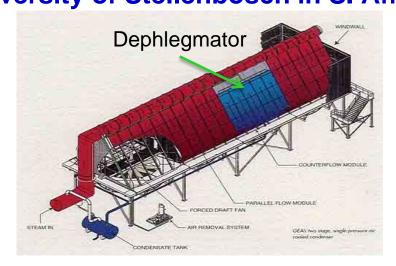


Cooler Tubes with Fins

Eskom Dry-Cooling Initial Temperature Difference (ITD) Variation with Ambient Temperature

Source: J.P. Pretorius and A.F. Du Preez, "Eskom Cooling Technologies", 14th IAHR Conference, 2009


Outline


- Overview
 - Water Use and Availability Technology Innovation Program
 - Power Plant Cooling
 - South Africa and Eskom
- Dry Cooling at Four Eskom's Power Stations in South Africa
- EPRI-NSF Collaboration
- Conclusion

Sample Project of EPRI: Water Spray Enhanced Air Cooled Condensers (Collaboration with University of Stellenbosch in S. Africa)

Hybrid Dry-Wet Dephlegmator Concept

Source: <u>http://www.gea-</u>

energytechnology.com/opencms/opencms/gas/en/products/Direct_Air-Cooled_Condensers.html

Key Potential Benefit

Up to 7% more power production on the hottest days than air cooled condensers

NSF-EPRI Collaboration on Advancing Dry Cooling Technologies

Funding Size

- \$6 M Collaboration (\$3 M commitment from each of EPRI TI and NSF)
- \$600 K to \$2.1 M for a 3 year project
- 5 to 10 projects

Timing

- Solicitation released on May 22, 2013
- Informational Webcast on 7/24/13 (Slides, Recording)
- Many proposals collected as of August 19, 2013
- Award Notification in Dec., 2013

Funding Approach

- Coordinated but independent funding
 - NSF awards grants.
 - EPRI contracts.
- Joint funding for most proposals
- Independent funding for a few proposals if needed

Value

- Leveraged \$3M from NSF
- Attracted top talents to power plant cooling innovation.

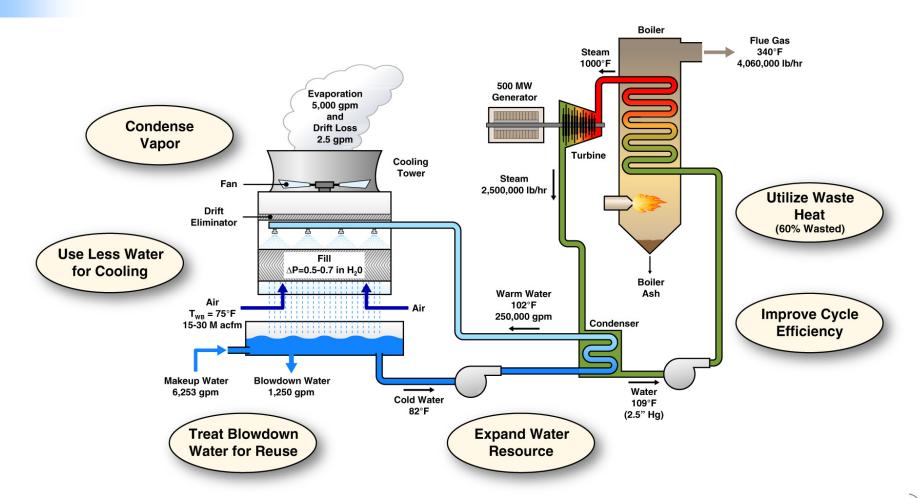
Concluding Remarks

- South Africa, with lots of coal and little water, has been the technological leader in dry cooling for 30 to 40 years. The US and other water starving countries may be headed down the same road.
- EPRI's team is benefited from Eskom's knowledge about dry cooling systems.
- Through EPRI's Water Use and Availability Technology Innovation Program, EPRI is pushing the envelope to develop next generation of dry cooling technologies.

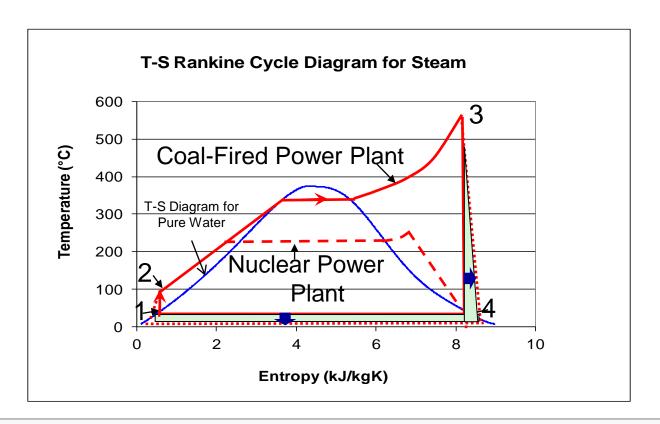
Where there's a will, there's a way.

- old English proverb

Thank you so much!



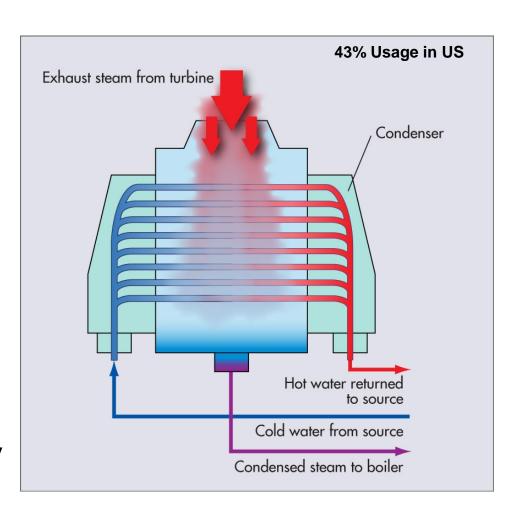
Together...Shaping the Future of Electricity


Appendices

Opportunities for Power Plant Water Use Reduction

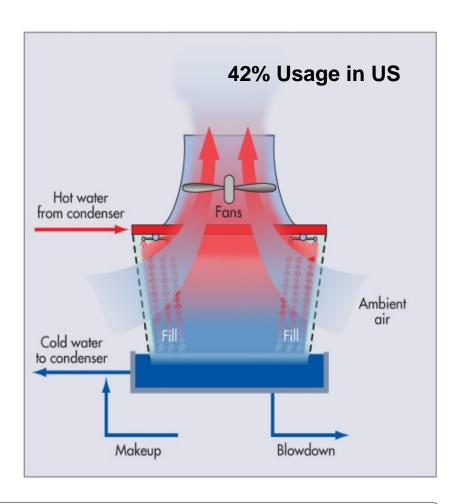
<u>Innovation Priorities</u>: Advancing cooling technologies, and applying novel water treatment and waste heat concepts to improve efficiency and reduce water use

Effect of Reducing Condensing Temperature on Steam Turbine Rankine Cycle Efficiency



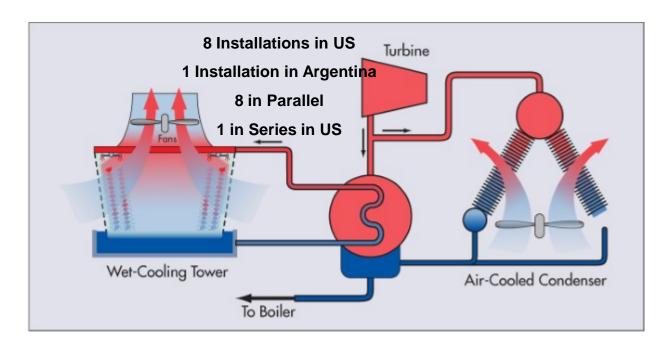
Potential for 5% (1st Order Estimate) more power production or \$11M more annual income (\$0.05/kWh) for a 500 MW power plant due to reduced steam condensation temperature from 50 ℃ to 35 ℃.

Once Through Cooling Pros/Cons


- Pros:
- Most cost effective
- Lowest steam condensate temp.
- Cons:
- Facing tightened EPA rules to minimize once through cooling (OTC) system entrance and discharge disturbance to water eco systems.
- Forced to or increasing pressure to retrofit OTC systems to cooling tower or dry cooling systems (19 power plans already affected by CA retrofitting regulations)

Cooling Tower Cooling System Pros/Cons

- Pros:
- Most effective cooling system due to evaporative cooling-95% less water withdrawal than once through cooling systems
- Cons:
- Significant vapor loss and makeup water needs
- Shut down in drought seasons
- Twice as expensive as once through cooling systems
- Less power production on hot days due to higher steam condensation temperatures compared to once through systems
- Water treatment cost

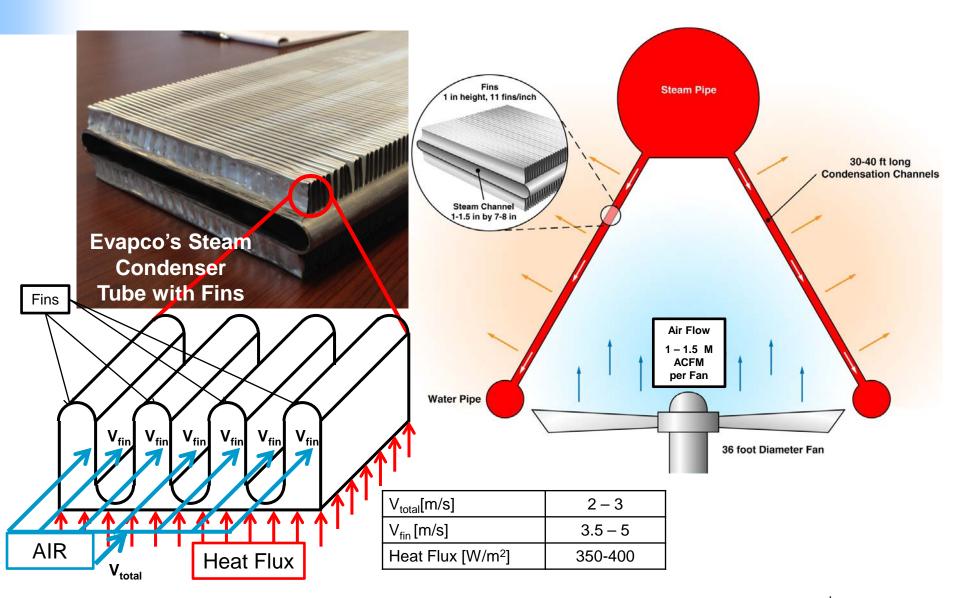


Challenges: Vapor Capture and Cooler Steam

Hybrid Cooling Pros/Cons

- Pros:
- Full power output even on hot days due to full operation of cooling tower systems
- Potential for more than 50% less vapor loss compared to cooling tower systems

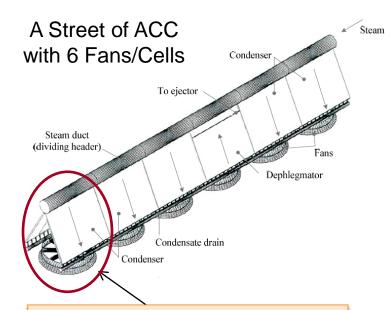
Challenge:


Develop alternative more cost effective hybrid sys.

Cons:

- Cooling tower shut down in drought seasons
- As expensive as air cooled condensers
- Dual cooling components

Air Cooled Condenser Dimensions and Air Flow Rate


Sample Data^{1,2,3} for Air Cooled Condensers

Ambient Air at 40°C and RH50%

ACC Design Parameters					
Cooling Capacity [MW]/Cell			10 – 22		
Tube Bundles per cell			8 – 10		
Tubes per bundle			40 – 57		
Spacing between Tubes [mm]			57		
Overall Heat Transfer Coefficient [W/m²K]			35 - 50		
Fan Static Pressure [Pa]			120 – 190		
Fan Power per cell [kW]			125 – 190		
Fan Diameter [m]			9 – 10		
Parameter	Air Side	Steam Side			

1 011 2 1011110101	r1	0 .0
Parameter	Air Side	Steam Side
Hydraulic Diameter [mm]	19 – 20	44 – 65
Flow Rate [kg/s]	540 – 750	5 – 9
Reynold's Number	4000 – 6000	NA*
Temperature [°C]	40	60 – 85
Area [m ²]	40,000	930
HTC [W/m ² K]	45 – 50	15,000 - 18,000
Pressure Drop [Pa]	75 – 100	125 – 250

^{*} Dependent on flow rate, steam condensation temperature and quality etc.

Cost: \$1.5 Million/ ACC cell (Footprint size: 12x12 m²/ACC cell)

Sources:

- 1. Heyns, J, A, "Performance Characteristics Of An Air Cooled Steam Condenser Incorporating A Hybrid (Dry/Wet) Dephlegmator", Thesis, 2008.
- 2. Maulbetsch, J, S, "Water Conserving Cooling Systems Air-Cooled Condensers", DOE ARPA-E Workshop, Presentation, 2012.
- 3. Evapco BLCT Dry Cooling

What do you do when it is hot?

Inlet air cooling with sprays

Testing at Crockett Co-Gen plant

Current Cooling System Data Comparison

500 MW Coal Fired Steam Power Plant with Heat Load of 2500 Mbtu/hr and Steam Flow Rate of 2.5 Mlb/hr.

Cooling System	System Cost (\$MM)	Cost Ratio Relative to Wet	Evaporative Loss (kgal/MWh)	Steam Condensation Temperature* (°F)	Coolant Flow Rate (gpm)
Wet Cooling Tower and Condenser	20 25.	1.00	0.5 - 0.7	116	100,000 - 250,000
Dry Direct	60 - 100	2.5 - 5	0.00	155	0
Once Through Cooling	10 15.	0.475	0.2 - 0.3	100	150,000 - 350,000
Hybrid	40 - 75	2 - 4	0.1 - 0.5	116	50,000 - 150,000

^{*} Steam Condensation Temperatures Based on T_{DB} of 100° F and T_{WB} of 78° F.

	Steam Condenser					Tower/ACC			
Cooling System	Heat Transfer Area (ft²)	Tube Dia. (in)	# of Tubes	Tube Length (ft)	Cost (MM\$)	No. of Cells	Cell Dimensions (ft x ft)	Tower/ACC Footprint (ft ²)	Cost (MM\$)
Wet Cooling Tower and Condenser	175,000 - 350,000	1.125 - 1.25	17,000 - 35,000	30 - 40	1 2.5	15 - 20	48 x 48 to 60 x 60	50,000 - 80,000	7 10.
Dry Direct	n/a	n/a	n/a	n/a	n/a	40 - 72	40 x 40	64,000 - 120,000	60 100.
Once Through Cooling	175,000 - 350,000	1.125 - 1.25	17,000 - 35,000	30 - 40	1 2.5	n/a	n/a	n/a	n/a
Hybrid	50,000 - 350,000	1.125 - 1.25	10,000 - 350,000	30 - 40	0.4 - 2.5	4 - 10/ 15- 30	48 x 48 to 60 x 60/ 40 x 40	10,000 - 36,000/ 24,000 - 48,000	30 80.

Eskom's Future Directions

- Two new supercritical coal fired stations: Medupi and Kusile
 - Dry cooling
 - Dry ashing
 - FGD to be equipped in Medupi
- Nuclear generation expansion
 - Increase current 2 x 970 MWe PWRs to 9600 MWe by 2030
 - Cooled by once-through seawater cooling with desalination for portable and demin.
- More nuclear and gas generation mix
- Renewables Initiation
 - 12% renewables (wind and concentrating solar) by 2030
 - Little capacity for expansion of hydro and/or pumped storage

Eskom Power Station Cooling Technologies

Year	Power station	Unit size [MW]	Cooling technology	
1962 onwards	Komati 1-5 Komati 6-9	5 x 100 4 x 125	Wet-cooled	
1967	Camden	8 x 200	Wet-cooled	
1969	Grootvlei 1-4	4 x 200	Wet-cooled	
1970	Hendrina	10 x 200	Wet-cooled	
1971	Arnot	6 x 350	Wet-cooled	
1971, 1977	Grootvlei 5-6	2 x 200	Indirect dry-cooled	
1976	Kriel	6 x 500	Wet-cooled	
1979	Matla	6 x 600	Wet-cooled	
1980	Duvha	6 x 600	Wet-cooled	
1981	Koeberg	2 x 965	Once-through (ocean)	
1985	Lethabo	6 x 618	Wet-cooled	
1985	Tutuka	6 x 609	Wet-cooled	
1987	Matimba	6 x 665	Direct dry-cooled	
1988	Kendal	6 x 686	Indirect dry-cooled	
1991	Majuba 1-3	3 x 657	Direct dry-cooled	
1998	Majuba 4-6	3 x 712	Wet-cooled	

More improvements at Medupi - Ease of Maintenance

- No more steps onto fan bridge
- Sliding door rather than hinged doors

Matimba Side Walk next to Air Cooled Condenser Rooms

Resources about Our Program

Advanced Water Research for Power Plants

EPRI is pursuing and developing potentially game changing, early stage, ideas, concepts, and technologies to reduce power plant freshwater withdrawal and consumption. Such technologies could improve cycle efficiency as well as help address water-related operational and siting constraints facing fossil, nuclear.

related to power plant cooling systems and processes. The joint EPRI-NSF solicitation will remain open until August 19, 2013.

biomass, and geothermal power generators.

In 2011, EPRI released a broad-based global request for information (RFI) to help identify concepts with breakthrough potential. Since then, EPRI received 114 proposals and several white papers through two RFI rounds and outreach. To date, EPRI has funded five advanced cooling projects and three water treatment projects. Information on these projects can be found here. EPRI is also working on funding an additional hybrid cooling project and three more water treatment projects.

On May 22, 2013, EPRI and the National Science Foundation (NSF) released a joint solicitation to advance dry cooling and dry-wet hybrid cooling technologies for power plant applications. The project is a \$6 million joint effort and follows from an EPRI-NSF workshop held on November 13, 2012 during the ASME Congress Conference in Houston, Texas. This workshop engaged experts in discussion of the power industry's water resource management needs, as well as state-of- the-art technologies, innovative concepts, and R&D opportunities

2013 Joint EPRI-NSF Solicitation 2012 Request for Information Solicitation Technology Innovation Water Use and Availability Program Overview Power Plant Cooling System Information and Data

www.epri.com/Pages/Advanced-Water-Research-for-Power-Plants.aspx

