CEMS for Measurement of Ammonia, SO$_3$, and Low Level NOx

McIlvaine Company Hot Topic Hour
Richard Himes – Senior Project Manager
rhimes@epri.com
Chuck Dene – Senior Project Manager
cdene@epri.com
October 22, 2009
Presentation Overview

• Compliance versus process control
• In situ versus extractive
• EPRI monitor evaluation approach
 – Lab assessment
 • Establish monitor accuracy
 – Field demonstration
 • Operability and reliability characteristics
 – Cost benefit application demonstration
• Low level NOx measurement
• Ammonia measurement
 – Issues and approaches taken to address
 – Successful applications
• SO$_3$ measurement
 – SO$_3$ + H$_2$SO$_4$
Compliance vs Process Control

- Compliance Measurements
 - Stack gas application
 - Near particulate free
 - Lower temperature
 - Representative average concentration
 - Daily zero & span checks
 - Span gases meet NIST traceability standards
 - Quarterly and annual QA/QC requirements
 - Availability

- Process Control
 - Economizer exit / air heater inlet applications
 - Ash particles
 - Higher flue gas temperature (i.e. 650 +/- 50 F)
 - Spatial differentiation more important
 - Less rigorous QA/QC required
 - Typically less documentation
In Situ vs. Extractive Measurement

• Issue of getting reactive species to monitor favors *in-situ* methods
 – Typically dealing with trace level concentrations
 – \(\text{SO}_3 / \text{NH}_3 \) reactive with potential reactions including:
 • \(\text{SO}_3 + \text{H}_2\text{O} \rightarrow \text{H}_2\text{SO}_4 \) Acid dewpoint
 • \(\text{SO}_3 + \text{CaO}_{(s)} \rightarrow \text{CaSO}_4_{(s)} \) < 2000 F
 • \(\text{NH}_3 + \text{SO}_3 + \text{H}_2\text{O} \rightarrow (\text{NH}_4)\text{HSO}_4_{(l)} \) 400–500 F
 • \(2\text{NH}_3 + \text{SO}_3 + \text{H}_2\text{O} \rightarrow (\text{NH}_4)_2\text{SO}_4_{(s)} \) 400–500 F
 – Sample stream temperature needs to be maintained above highest reaction temperature
 – Potential impacts of sample stream contact with filtration media
• In situ measurements provide potential benefits over extractive approach
 – Limited measurement bias
 – Faster system response
 – Line of sight measurements more representative relative to single point
Three Step General Approach

1. Laboratory Assessment
 - Establish accuracy, detection limits, and possible interferences
 - Test over range of target gas concentrations and cell conditions
 - Vary temperature, moisture, background gas composition

2. Single Path Field Demonstration
 - Establish operability and reliability characteristics
 - Test over range of path lengths with particulate laden flue gas
 - Assess alignment and signal to noise ratio over time and operating conditions
 - Assess maintenance requirements

3. Cost Benefit Application Demonstration
 - Structured test with end use of data stream
 (i.e. process control, operator advisory, etc.)
 - Document implementation specification, capital and installation costs, benefits from end use
CEM Measurement of Low Level NOx

• Important issues identified
 – Instrument Performance
 – NO$_2$ - NO Converter
 – Linearity / Drift Studies
 – Sample Conditioning Systems
 – Sample Lines
CEM Measurement of Low Level NOx

NO₂ Converter Efficiency

<table>
<thead>
<tr>
<th>Converter Type</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molybdenum</td>
<td>96.9</td>
</tr>
<tr>
<td>Molybdate-Carbon</td>
<td>94.3</td>
</tr>
<tr>
<td>Molybdate-Carbon (hot & wet)</td>
<td>85.5</td>
</tr>
<tr>
<td>Stainless Steel</td>
<td>97.3</td>
</tr>
<tr>
<td>Vitrous Carbon (hot & wet)</td>
<td>83.3</td>
</tr>
</tbody>
</table>

Linearity and Drift

<table>
<thead>
<tr>
<th>Converter Type</th>
<th>Linearity</th>
<th>Zero Drift</th>
<th>Calibration Drift</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molybdenum</td>
<td>0.9999</td>
<td>0.26</td>
<td>0.24</td>
</tr>
<tr>
<td>Stainless Steel</td>
<td>1.0000</td>
<td>0.74</td>
<td>0.13</td>
</tr>
<tr>
<td>Moly-Carbon</td>
<td>0.9999</td>
<td>0.29</td>
<td>0.82</td>
</tr>
<tr>
<td>Vit.-Carbon h/w</td>
<td>0.9997</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Moly-Carbon h/w</td>
<td>0.9985</td>
<td>1.24</td>
<td>6.07</td>
</tr>
</tbody>
</table>
CEM Measurement of Low Level NOx

Sample Conditioning Systems

- Dilution extractive
- Permeation dryer
- Thermoelectric cooler (impinger type)
- Refrigerated (coil type) condenser
- Glass impingers in ice bath
- Duel type (ambient temp. water removal followed by permeation dryer)

Sample Lines

- Stainless Steel 25°C
- Stainless Steel 175°C
- Silcosteel 107°C
- Silcosteel 175°C
- PFA Teflon 107°C
- Dilution extractive sampling probe
- Hot converter & analyzer
- Upfront converter/thermal-electric
Ammonia Measurement Status

- Lab evaluations indicate TDL ammonia monitors tested work well under controlled conditions
- Application to coal-fired boilers introduce complications
 - Optical measurement issues
 - Port installation and alignment
 - Laser signal implications
 - Variable fly ash in flue gas
 - Laser beam attenuation and variable S/N
 - Long path lengths (reduced power and maintenance of alignment)
 - Current uses
 - Non-spatially resolved measurements for data trending
 - Spatially resolved measurements for open loop control
 - Process control and/or optimization
Ammonia Monitor Field Applications

- Successful ammonia monitor field applications
 - SCR process control with NEO monitor
 - 1200 MW unit
 - 15' line of sight cuts corner of reactor
 - Excellent mixing going into SCR
 - Just downstream of expansion joint
 - SNCR process control with Siemens monitor
 - 140 MW unit
 - Hot side ESP eliminates particle effects
 - Nominal 18 foot path length
 - SNCR process control with Unisearch monitor
 - 300 MW unit
 - Partial shielded path
 - Reduces 20’ path to ~14’ path
Continuous SO_3 Measurements

FTIR Measurement Location

- MRC FTIR tests not able to attain target detection limit for SO_3
 - New high power IR source developed
 - Increased signal to be tested for improved SO_3 detection

- FTIR used at MRC for continuous monitoring of HCl, SO_2, NH_3 during SCR testing
 - FTIR results used to vary additive injection rates to compensate for variations in coal used

- System operated completely by MRC personnel
- System maintained alignment over 2 meter path after restarting of SCR