

CEMS for Measurement of Ammonia, SO₃, and Low Level NOx

McIlvaine Company Hot Topic Hour Richard Himes - Senior Project Manager rhimes@epri.com Chuck Dene – Senior Project Manager cdene@epri.com October 22, 2009

Presentation Overview

- Compliance versus process control
- In situ versus extractive
- EPRI monitor evaluation approach
 - Lab assessment
 - Establish monitor accuracy
 - Field demonstration
 - Operability and reliability characteristics
 - Cost benefit application demonstration
- Low level NOx measurement
- Ammonia measurement
 - Issues and approaches taken to address
 - Successful applications
- SO₃ measurement
 - SO₃ + H₂SO₄

Compliance vs Process Control

- Compliance Measurements
 - Stack gas application
 - Near particulate free
 - Lower temperature
 - Representative average concentration
 - Daily zero & span checks
 - Span gases meet NIST traceability standards
 - Quarterly and annual QA/QC requirements
 - Availability
- Process Control
 - Economizer exit / air heater inlet applications
 - Ash particles
 - Higher flue gas temperature (i.e. 650 +/- 50 F)
 - Spatial differentiation more important
 - Less rigorous QA/QC required
 - Typically less documentation

In Situ vs. Extractive Measurement

- Issue of getting reactive species to monitor favors in-situ methods
 - Typically dealing with trace level concentrations
 - SO₃ / NH₃ reactive with potential reactions including:
 - $SO_3 + H_2O \longrightarrow H_2SO_4$ Acid dewpoint • $SO_3 + CaO_{(s)} \longrightarrow CaSO_{4(s)}$ < 2000 F• $NH_3 + SO_3 + H_2O \longrightarrow (NH_4)HSO_{4(l)}$ 400-500 F• $2NH_3 + SO_3 + H_2O \longrightarrow (NH_4)_2SO_{4(s)}$ 400-500 F
 - Sample stream temperature needs to be maintained above highest
 - reaction temperature
 - Potential impacts of sample stream contact with filtration media
- In situ measurements provide potential benefits over extractive approach
 - Limited measurement bias
 - Faster system response
 - Line of sight measurements more representative relative to single point

EPRI Monitor Evaluation Approach

Three Step General Approach

- 1. Laboratory Assessment
 - Establish accuracy, detection limits, and possible interferences
 - Test over range of target gas concentrations and cell conditions
 - Vary temperature, moisture, background gas composition
- 2. Single Path Field Demonstration
 - Establish operability and reliability characteristics
 - Test over range of path lengths with particulate laden flue gas
 - Assess alignment and signal to noise ratio over time and operating conditions
 - Assess maintenance requirements
- 3. Cost Benefit Application Demonstration
 - Structured test with end use of data stream (i.e. process control, operator advisory, etc.)
 - Document implementation specification, capital and installation costs, benefits from end use

CEM Measurement of Low Level NOx

- Important issues identified
 - Instrument Performance
 - NO₂ NO Converter
 - Linearity / Drift Studies
 - Sample Conditioning Systems
 - Sample Lines

CEM Measurement of Low Level NOx

NO₂ Converter Efficiency

	Efficiency
Converter Type	%
Molybdenum	96.9
Molybdate-Carbon	94.3
Molybdate-Carbon (hot & wet)	85.5
Stainless Steel	97.3
Vitrous Carbon (hot & wet)	83.3

Linearity and Drift

Converter		Zero	Calibration
Туре	Linearity	Drift	Drift
Molybdenum	0.9999	0.26	0.24
Stainless Steel	1.0000	0.74	0.13
Moly-Carbon	0.9999	0.29	0.82
VitCarbon h/w	0.9997	NA	NA
Moly-Carbon h/w	0.9985	1.24	6.07

wet

CEM Measurement of Low Level NOx

Sample Conditioning Systems

- Dilution extractive
- Permeation dryer
- Thermoelectric cooler (impinger type)
- Refrigerated (coil type) condenser
- Glass impingers in ice bath
- Duel type (ambient temp. water removal followed by permeation dryer)

Sample Lines

- Stainless Steel 25°C
- Stainless Steel 175°C
- Silcosteel 107°C
- Silcosteel 175°C
- PFA Teflon 107°C
- Dilution extractive sampling probe
- Hot converter & analyzer
- Upfront converter/thermalelectric

© 2009 Electric Power Research Institute, Inc. All rights reserved.

Ammonia Measurement Status

- Lab evaluations indicate TDL ammonia monitors tested work well under controlled conditions
- Application to coal-fired boilers introduce complications
 - Optical measurement issues
 - Port installation and alignment
 - Laser signal implications
 - Variable fly ash in flue gas
 - Laser beam attenuation and variable S/N
 - Long path lengths (reduced power and maintenance of alignment)
 - Current uses
 - Non-spatially resolved measurements for data trending
 - Spatially resolved measurements for open loop control
 - Process control and/or optimization

Ammonia Monitor Field Applications

Successful ammonia monitor field applications

- SCR process control with NEO monitor
 - 1200 MW unit
 - 15' line of sight cuts corner of reactor
 - Excellent mixing going into SCR
 - Just downstream of expansion joint
- SNCR process control with Siemens monitor
 - 140 MW unit
 - Hot side ESP eliminates particle effects
 - Nominal 18 foot path length
- SNCR process control with Unisearch monitor
 - 300 MW unit
 - Partial shielded path
 - Reduces 20' path to ~14' path

Continuous SO₃ Measurements FTIR Measurement Location

• MRC FTIR tests not able to attain target detection limit for SO₃

- New high power IR source developed
- Increased signal to be tested for improved SO₃ detection
- FTIR used at MRC for continuous monitoring of HCI, SO₂, NH₃ during SCR testing
 - FTIR results used to vary additive injection rates to compensate for variations in coal used
- System operated completely by MRC personnel
- System maintained alignment over 2 meter path after restarting of SCR

