

Energy, Utility & Environment Conference

San Diego, CA

February 18, 2015

SO₂ Control Using Dry Sorbent Injection Technology with Hydrated Lime

Author: Ge Co-Author: Jin

Gerald Hunt Jim Dickerman

Agenda

- Why Dry Sorbent Injection (DSI)?
- Hydrated Lime Sorbents
- DSI Case Studies
- Conclusions

Summary

Why Dry Sorbent Injection (DSI)?

Why Dry Sorbent Injection (DSI)?

- Equipment is low installed capital cost
- System relatively easy to retrofit to most plants
- Small equipment footprint
- Mechanically simple system
 - ~1 year schedule
 - award to installation
 - Low consumable requirement
 - 🗸 air, power

Hydrated Lime Sorbents

Range of Products

Choist North America

Sorbent	Standard Hydrated Lime	Sorbacal® H	Sorbacal® SP	Sorbacal® SPS	Units
Figure					_
Typical Available Ca(OH) ₂	92 – 95	93	93	АСТ 93	IVATION %
Typical Surface Area	14 – 18	> 20	~40	~40	m²/g
Typical Pore Volume	~0.07	0.08	~0.20	~0.20	cm³/g

DSI Case Studies

DSI Case Studies #1a and #1b

- Application \rightarrow Industrial Manufacturing Process
- Goal \rightarrow 95+% SO₂ Removal Efficiency
- Why \rightarrow Meet Future SO₂ Permit Limit
- Process \rightarrow SDA \rightarrow Multi-Clone \rightarrow DSI \rightarrow FF
- Flue gas temperature at DSI location 300-350°F
- DSI \rightarrow One (1) Injection Lance @ Fabric Filter Inlet
- Sorbent \rightarrow Sorbacal[®] SPS

Case	Flue Gas Volume	Moisture Content	Baseline SO ₂ Conc.
	ACFM	Vol. %	ppmv
1a	10,000	~14	100
1b	55,000	~36	300

DSI Case Studies #1a and #1b

- Application \rightarrow 500 MW Electric Generating Utility (EGU)
- Goal → Increase Overall SO₂ Reduction to ~70% (40-45% Incremental SO₂ Removal with DSI)
- Why \rightarrow Meet Future SO₂ Limit
- Low Sulfur Coal \rightarrow Boiler \rightarrow Air Heater \rightarrow DSI \rightarrow SDA \rightarrow FF
 - Process Conditions
 - ✓ Flue gas moisture ~20% relative humidity at stack
 - ✓ Baseline concentration ~225-250 ppmv SO₂
 - ✓ Flue gas temperature at DSI location 275-300°F
 - DSI \rightarrow Five (5) Injection Ports @ DSI Location
- Sorbent \rightarrow Sorbacal[®] SPS

- Application \rightarrow 985,000 ACFM Cement Plant
- Goal \rightarrow At Least 50% SO₂ Removal Efficiency
- Why \rightarrow Comply with Future Permit SO₂ Limit
- Raw Feed & Fuel → Kiln → Pre-Heater → ID Fans
 → Raw Mill → Fabric Filter

Lhoist North America

- Process Conditions
 - Flue gas moisture unknown
 - Baseline concentration 15 ppmv SO₂ with Raw Mill on / 35 ppmv SO₂ with Raw Mill off
 - ✓ Flue gas temperature at DSI location
 - ID Fan Inlet 575-675°F / Fabric Filter Inlet 370-470°F
- DSI \rightarrow Four (4) Injection Lances per Duct @ DSI Location
- Sorbent \rightarrow Sorbacal[®] SPS

- Application \rightarrow 580 SCFM Pilot Plant
- Goal \rightarrow Compare Relative SO₂ Removal Efficiency
- PRB Coal \rightarrow Boiler \rightarrow DSI \rightarrow Heat Exchanger \rightarrow ESP
- Process Conditions
 - ✓ Flue gas moisture ~9% by Volume
 - ✓ Baseline concentration ~150 ppmv SO₂
 - ✓ Flue gas temperature at DSI location ~700-750°F
- DSI \rightarrow One (1) Injection Lance @ DSI Location
 - Sorbents \rightarrow Standard Hydrated Lime & Sorbacal[®] SPS

Conclusions / Discussion

Conclusions

- Choist North America
- All cases were successful in achieving target SO₂ removal efficiency using DSI technology with hydrated lime sorbent
- Cases 1a and 1b
 - DSI using Sorbacal[®] SPS able to achieve high SO₂ removal efficiencies (> 95%)
 - Flue gas moisture content appears to be primary factor driving better performance in Case 1b

Case 2

 DSI using Sorbacal[®] SPS effective solution for SO₂ trim application even on large scale

Conclusions

- Case 3
 - DSI using Sorbacal[®] SPS able to achieve target SO₂ removal at various injection locations under varying conditions
 - Demonstrated high SO₂ removal (85-90%) at three (3) injection locations
 - Illustrates why each site must be evaluated on case by case basis
 - Case 4
 - ✓ DSI using Sorbacal[®] SPS was ~40% more efficient than standard hydrated lime for SO₂ control at 700-750°F injection temperature based on PRB coal

Summary

Summary

- Choist North America
- DSI technology using hydrated lime sorbents viable SO₂ compliance solution
- Flue gas moisture important for performance
- Sorbent properties also important
 - ✓ standard hydrated lime vs. enhanced hydrated limes
- Path Forward:
 - Additional SO₂ trials to understand how different parameters impact performance
 - Improve flue gas to sorbent mixing
 - Improve understanding of impacts of competitive reactions, flue gas temperature, flue gas moisture, sorbents, etc. on SO₂ removal
 - ✓ High temperature applications (furnace injection)

Thank you!!

If you have any questions feel free to contact,

Gerald Hunt Lhoist North America Flue Gas Treatment (FGT) Specialist (412) 979-6337 gerald.hunt@lhoist.com