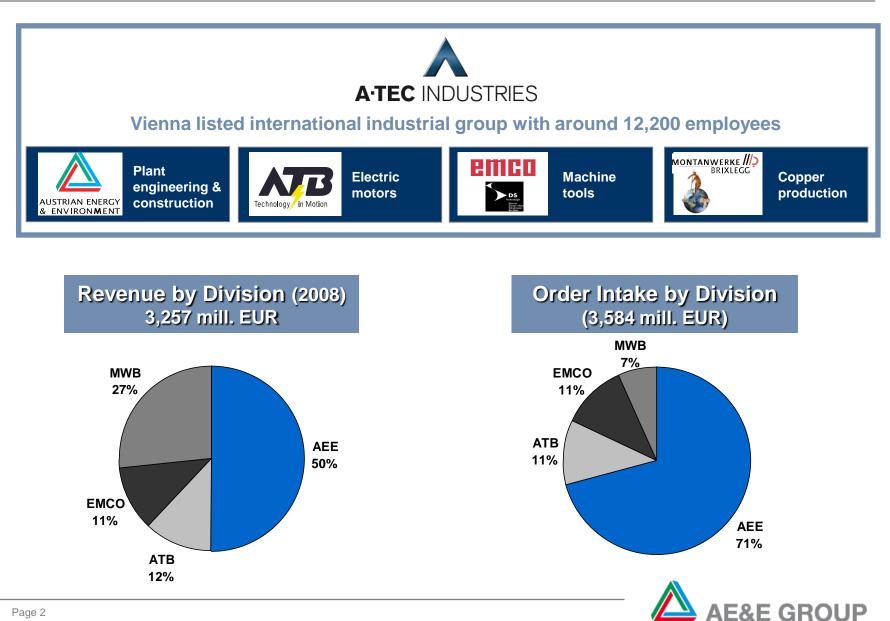
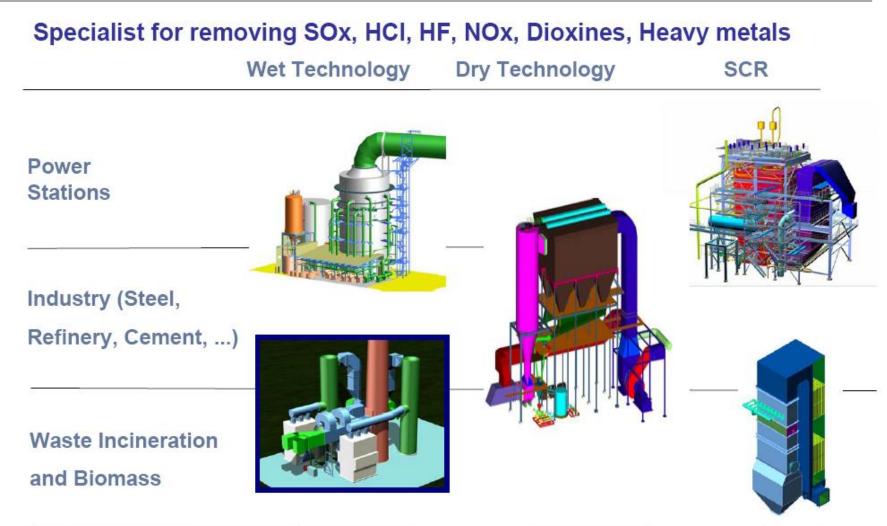
AE&E GROUP Air Pollution Control

AIR POLLUTION CONTROL IN CEMENT INDUSTRY



a company of A·TEC INDUSTRIES AG

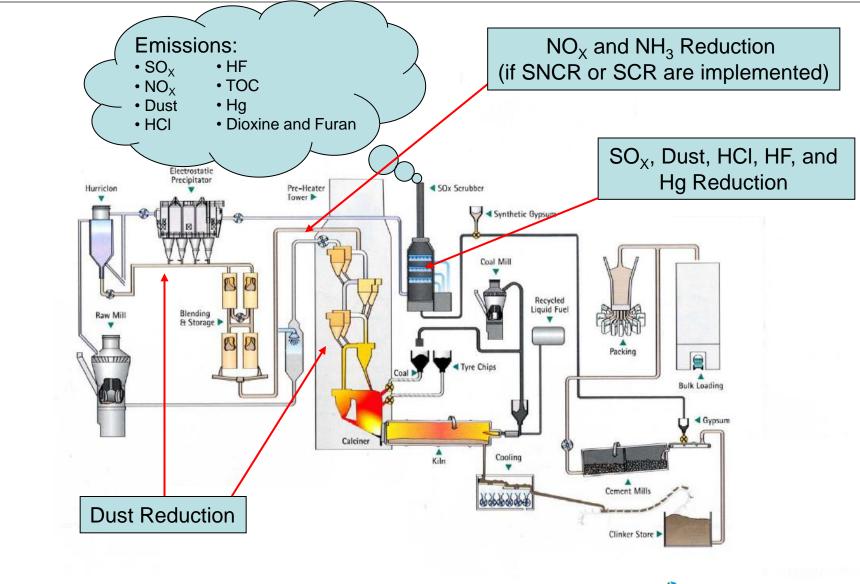
www.aee-group.com



AE&E Group- APC Division

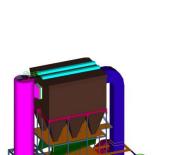
Proposed MACT Rule

Proposed Rule will affect Existing and New Sources for:

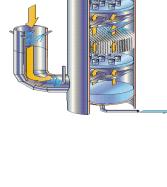

	Existing Source	New Source
HCI	2 ppmv @ 7% O ₂	0.1 ppmv @ 7% O ₂
Hg	43 lb/MMton	14 lb/MMton
Particulate	0.085 lb/ton	0.080 lb/ton
THC or TOC	7 ppmv @ 7% O ₂ or 2 ppmv @ 7% O ₂	6 ppmv @ 7% O ₂ or 1 ppmv @ 7 % O ₂

- Action expected June 2010
- Affects 93 facilities operating 163 kilns and clinker coolers (2005)
- HCI control has replaced SOx limits in proposed rule
- Other Pollutants to consider??? (NOx , Dioxin/Furan other Heavy Metals)

Gaseous Emissions in Cement Production



Control Strategies


- One or more Technology approaches may be required to meet the new MACT requirements:
 - HCI
 - Wet Scrubber System
 - Two Stage or Multi Stage Wet Scrubbing System
 - Dry Scrubbing System/Fabric Filter
 - Mercury
 - Hallogen (Bromine) Injection on Limestone Feed
 - Activated Carbon Injection
 - Particulate
 - Enhanced filter bag technology
 - Baghouse Conversion
 - THC or TOC
 - RTO
 - Activated Carbon

NOx emissions are not currently addressed, however SCR's may be required in the future or for new system permitting

Wet Scrubbing- Limestone Process

Clean

gas

Process Characteristics

- Open spray tower optimized by using advanced CFD tools
- Removing of acid gaseous pollutants (SO₂, HCI, HF)
- Low operation cost
- Low maintenance costs
- Long operation period between routine maintenance
- Limestone as available and low cost absorbent
- Producing marketable gypsum
- Reaching SO₂ removal up to 99 % Raw flue gas
- Reaching HCI removal greater than 95%
- Reaching dust removal up to 80 %
- Most used technology worldwide

Capacity

- Flue gas volume
- SO₂ concentration

up to 4.8 million m³/h up to 30,000 mg/m³

Limestone

Gypsum

Tie-in of FGD Plant into the Cement Production

Usage of FGD gypsum in cement production:

- FGD gypsum can be used instead of natural gypsum in cement
- Coagulation time of cement is slightly increased
- ► Color changes → slow change in recipe necessary

Waste water can be used in the cement process:

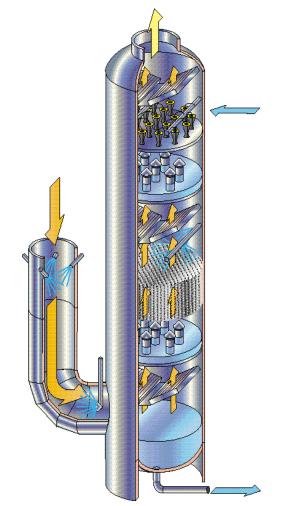
- Injection on the clinker apron conveyor
- Injection into the cement finish mill
- Injection the clinker cooler
- Injection into the raw mill

Low operational costs:

- Waste water replaces process water
- Saved raw material costs almost equal operation costs

Page 8

Bleedstream Injection on Clinker Apron Conveyor


Customised Concepts

- For flue gas from different combustion processes, mainly waste incineration
- Multifunctional: quenching, gas absorption, dust separation, dioxin removal, optional condensation
- Neutralisation agent: sodium hydroxide, (hydrated lime or limestone for external neutralisation)
- Absorbent (for additional dioxin and mercury removal) introduction upstream or as slurry into scrubber
- Very low emissions achievable
- In combination with further residue treatment: recovery of useful materials (e.g. gypsum, sodium chloride, hydrochloric acid, heavy metals)

Capacity

Flue gas volume

up to 180,000 m³phr (std. wet)

Dry Scrubbing Technology- Turbosorp®

Cleaning of Flue Gases from Energy from Waste, Biomass, Industry

- Power plants
- System based on fluidised bed technology
- Removal of all pollutants in one step
- Safe fulfilling of EU emission guidelines
- Reliable operation by minimisation of moving parts
- Waste water free system
- Operation above the dew point no corrosion
- High removal rate of SO2 (> 95 %)
- High removal rate of HCI (>95%)
- High removal rate of SO3 (up to 99 %)
- High removal rate of dust (> 99+ %)
- High removal rate of Hg (>90 %)
- Waste water free system
 Capacity
 - Flue gas volume up to 1.2 million m³phr (std. wet)

&F GROUP

Mercury Removal

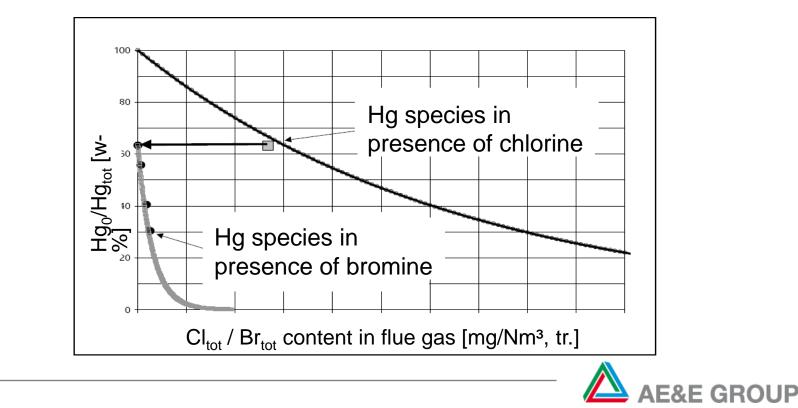
- In 2000 2.269 t of mercury were anthropogenically emitted
- 5% (113.5 t) from Cement Industry
- Mercury exists in a chemical equilibrium.

• Hg^{el}/Hg⁰: Not water soluble; Cannot be captured in WFGD units

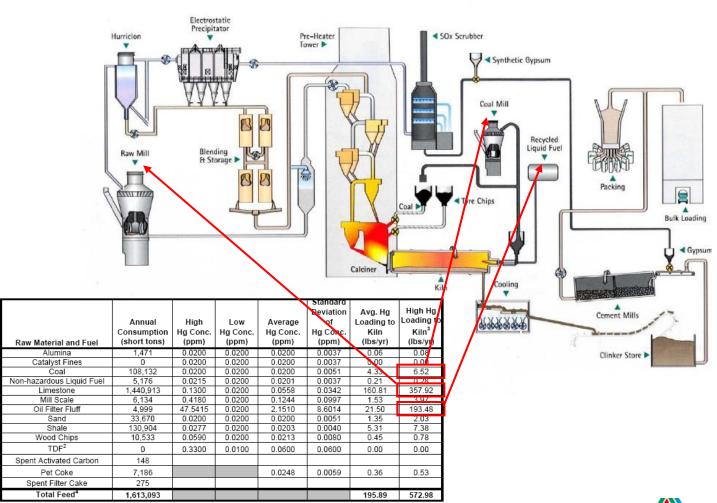
• Hgion/Hg²⁺: Water soluble; Can be captured in WFGD units

 $Hg_2 \leftrightarrow Hg^{2+} + Hg^0$

Increased mercury capture by shifting the chemical equilibrium towards Hg²⁺ e.g. by adding halogenes into the kiln/furnace/boiler



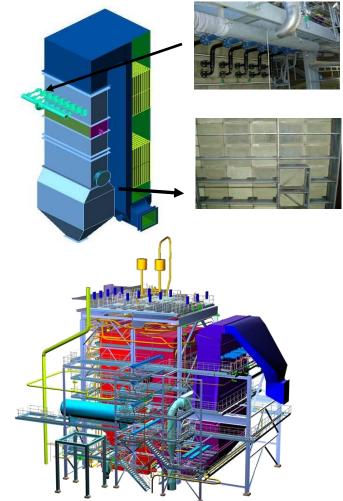
Halogenation of Mercury in Flue Gas


- Halogens are an effective instrument to reduce Hg⁰ species in flue gas
- Efficiency of halogenes: F < CI < Br due to the stability of the mercury complex.
- Bromine technology patented by Vosteen with AE&E as partner in Europe
- Possibility to dose according to current emissions.

Origin Of Mercury Emissions in Cement Production

Example of cement plant and mercury emissions

Page 13 (Table does not necessarily correspond to displayed flow sheet.)


NO_x Removal Technology

SNCR (Selective Non-Catalytic Reduction)

- For waste incineration and biomass plants
- Injection of ammonia water or urea solution into combustion chamber
- With or without ammonia recovery
- Reaching NO_x removal up to 85%

SCR (Selective Catalytic Reduction)

- Catalysts for NO_x-removal and dioxin destruction
- Arrangement on hot or cool side
- Reaching NO_x removal up to 90%
- For Power Stations and Industries
- For Energy from Waste Plants and biomass plants

Capacity

Flue gas volume 20,000 – 2,500,000 m³phr (std. wet)

OPEN POINTS

- Compliance strategy will vary based on plant configuration and pollutant levels at each facility
- Pollutant levels vary based on availability/source of raw materials and fuel types
 - Mercury content in raw material highly dependend on source of limestone
 - Secondary fuels (individually and in combinations) used in kiln
- Zero liquid emission may be possible? (where to inject the waste water stream)
- Necessity to discharge small amounts of waste water with high mercury content

FGD Reference Plant In Cement Industry

KEY DATA

UNIT: TRBOVLJE, SLOVENIA CUSTOMER: Lafarge Cement D.D. Start-Up 2007

TECHNOLOGY/SUPPLY:

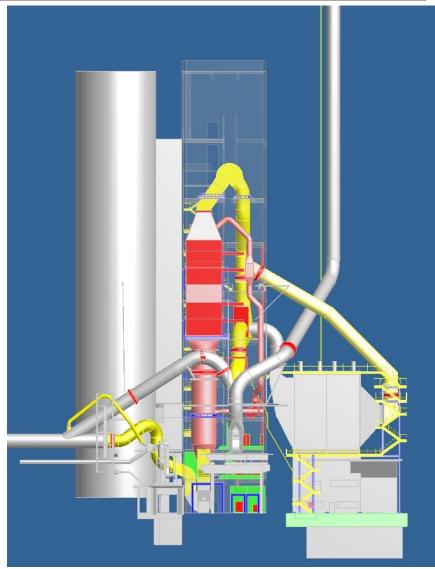
Absorber island, limestone preparation, dewatering, electrical and I&C, erection, commissioning

Fuel: cement raw materials, coal, plastics

Capacity (cement production):

560.000 [t/a]

Flue Gas Volume:	240,000 m³/h (std _{wet})
SO ₂ inlet:	3,000 mg/m³ (std _{dry})
Removal Efficiency:	93.3 %



SCR- SEMI Dust application (in tendering phase)

Mannersdorf/ Lafarge Perlmooser

- •Flue gas flow: 180.000 Nm³/h,wet
- •Flue gas temperature: > 290 °C
- •Dust concentration: 1 70 g/Nm^{3*})
- •NO_X raw gas max. 500 mg/Nm³,dry, 10% O₂
- >NO_X outlet <170 mg/Nm³,dry,10 % O₂
- >NH₃-slip <20 mg/Nm³, dry, 10% O₂
- Expected lifetime of catalyst 8.000 hours max. 1 year
- *test runs required to verify operability ! (period of approx. 12 months)

SCR- Tail End application

Example For Possible Application At Portland Cement Plants

- •Flue gas temperature: > 240 °C
- •Dust concentration: < 5 mg/Nm³
- •NO_X raw gas max. 800 mg/Nm³,dry, act. O₂
- •SO₂ raw gas max. 50 mg/Nm³,dry,act. O₂
- NO_X outlet <100 mg/Nm³,dry, act. O₂</p>
- >NH₃-slip <10 mg/Nm³, dry, 0% O₂
- >PCDD/PCDF <0,1 ng TE/Nm³,dry, act. O₂
- Expected lifetime of catalyst 24.000 hours max. 3 years

Inlet conditions vary and need to be checked for any plant

Contact:

AE&E - Von Roll, Inc. Donald R. Hug Vice President Air Pollution Control - North America 302 Research Drive, Suite 300, Norcross, GA 30092

 Tel:
 + 770-613-9788

 Mobile:
 + 770-500-7909

 e-mail:
 donald.hug@aee-vonroll.com

Contact:

AE&E Group - Austria Dr. Harald Reissner Head of Process Technology – Air Pollution Control Director Technology, R&D – Air Pollution Control Waagner-Biro Platz 1, 8054 Raaba/Graz, Austria

Tel:	+ 43-316-501-235
Mobile:	+ 43-676-89501-0235
e-mail:	harald.reissner@aee-austria.at

a company of A·TEC INDUSTRIES AG

www.aee-group.com