

NATIONAL ENERGY TECHNOLOGY LABORATORY

Fuel Flexible Advanced Energy Systems for the Production of Syngas, Hydrogen and Fuels

Dirk Van Essendelft

U.S. Department of Energy National Energy Technology Laboratory Separations and Fuels Processing McIlvaine Company Hot Topic Hour August 5, 2010

Outline

- 1. NETL Coal/Biomass Program Objective
- 2. Technology Concept Overview
- 3. Technical Challenges in Implementation
- 4. Program Implementation Strategy
- 5. Research Summary
- 6. Program Organization
- 7. Summary and Future work

Program Objective

"By 2012, complete R&D to integrate this technology with CO2 separation, capture, and sequestration into a "zero" emission configuration(s) that can provide electricity with less than a 10 percent increase in cost."

Project Goal

To identify, evaluate, and address the technical challenges involved in utilizing biomass in conjunction with coal in co-gasification systems

This study supports the expansion of DOE's R&D portfolio with an intent to meet "zero emission" standards

The Concept

Technical Challenges

<u>Pressurized Dry Feed</u> • Technology is not mature • Particle Size & Shape factors impact feeder performance

<u>Gasifier Performance</u> •Reaction Kinetics •Material Interactions •Product Effects (Ash...) •Models not Developed/Validated

Program Implementation Strategy

Research Summary

Focus

•Solve Technical Challenges in Biomass Preparation and Feeding <u>Active Research</u>

- •Chem./Heat Treatments
- Specific Grinding Energy

Sympatec QICPIC Particle Size and Shape Analyzer

518.250 1711.286 346.375j 0.374 0.202 1894

EQPC 833.908 FERET_MAX 1559.947 FERET_MN 762.443 Sphericity 0.525 Aspectratio 0.489 Image number 1984

EQPC 841.364 FERET_MAX 2003.519 FERET_MN 997.325

- Biomass Liquefaction
- •HP Dry Feeder

Focus

•Develop and Apply Computational Methods to Solve Technical Challenges <u>Active Research</u>

•CFD Model (NETL C3M)

- Validation Studies
 - •NRC Canada •PSDF in Alabama

Focus

•Measure Chemistry in Real Gasification Environments <u>Active Research</u>

- Fixed Bed/LurgyEntrained/Drop Tube
- •Advanced HP

<u>Focus</u>

•Develop New Materials that Last Longer in Gasification Environments with Broader Chemical Compatibility <u>Active Research</u> •Refractory Materials •Slag Modeling

NATIONAL ENERGY TECHNOLOGY LABORATORY

Program Organization

Summary and Future Work

- NETL has a wide ranging program with the goal of understanding and addressing the technical and logistical hurtles involved in co-utilization of biomass with coal in Gasification
- Always interested in collaboration to develop new research areas and apply technology
- NETL is expanding research and applying knowledge and expertise to other technical areas such as Oxy-Fuel Combustion

Questions

(10)

Why High Pressure Dry Feeding?

 Table 2
 Key results for the computed IGCC cases. A single gas turbine was assumed and the plant gross power was in the 430-480 MW range. The complete power plant system was considered in the energy balance (e.g. the auxiliary power consumption for coal drying and CO₂ compression was accounted for)

Coal ID	Coal 1		Coal 2		Coal 3		Coal 4		Coal 5	
Name	North Dakota lignite		Wyoming Powder River Basin (PRB)		Illinois #6		Upper Freeport, PA		Pocahontas #3, VA	
Capture of CO ₂	Without	With	Without	With	Without	With	Without	With	Without	With
Case 1 (Dry feed with syngas heat recovery)										
Coal as-received [kg/s/MW]	0.131	0.171	0.115	0.149	0.089	0.115	0.071	0.091	0.063	0.082
Water removed [kg/s/MW]	0.038	0.049	0.028	0.036	0.003	0.004	0.000	0.000	0.000	0.000
CO ₂ captured [kg/kWh]	0.000	0.848	0.000	0.815	0.000	0.767	0.000	0.735	0.000	0.780
Net power [MW]	410	343	412	346	420	353	421	358	419	353
Thermal efficiency (ar, HHV)	44.1 %	33.7 %	44.3 %	34.3 %	44.2 %	34.1 %	45.6 %	35.7 %	45.7 %	35.3 %
Thermal efficiency (ar, LHV)	48.1 %	36.8 %	47.9 %	37.0 %	46.1 %	35.6 %	47.0 %	36.8 %	47.0 %	36.3 %
CO ₂ emitted [kg CO ₂ / kWh el]	0.762	0.147	0.740	0.143	0.698	0.137	0.679	0.132	0.709	0.138
Case 2 (Slurry feed with full water quench)										
Coal as-received [kg/s/MW]	0.305	0.432	0.199	0.251	0.120	0.140	0.086	0.098	0.076	0.089
CO ₂ captured [kg/kWh]	0.000	2.163	0.000	1.377	0.000	0.929	0.000	0.765	0.000	0.815
Net power [MW]	300	220	328	282	357	331	370	351	366	339
Thermal efficiency (ar, HHV)	18.9 %	13.4 %	25.7 %	20.4 %	32.6 %	27.9 %	37.6 %	33.0 %	38.1 %	32.4 %
Thermal efficiency (ar, LHV)	20.6 %	14.6 %	27.7 %	22.0 %	34.0 %	29.1 %	38.7 %	34.0 %	39.1 %	33.3 %
CO ₂ emitted [kg CO ₂ / kWh el]	1.704	0.253	1.227	0.168	0.907	0.131	0.790	0.136	0.817	0.143

Maurstad, O., H. Herzog, et al. (2006). Impact of Coal Quality and Gasifier Technology on IGCC Performance. <u>8th International Conference on Greenhous Gas Control Technologies. Trondheim, Norway.</u>

(11)

Background

Coal

- National resource with over 200 years supply
- Currently supplies
 over 50% of US power
 - Potential to supply transportation fuels

Biomass

12

- Carbon neutral
- Renewable

NATIONAL ENERGY TECHNOLOGY LABORATORY

NETL Office of Systems, Analysis and Planning

Reducing GHG Footprint with Carbon Capture & Biomass

Project Overview How Significant of a Resource is Biomass?

NATIONAL ENERGY TECHNOLOGY LABORATORY

Mbrandt, A., A Geographic Perspective on the Current Biomass Resource Availability in the United States. 2005, National Renewable Energy Laboratory: Golden CO. Net Generation by Energy Source: Total (All Sectors). : http://www.eia.doe.gov/cneaf/electricity/epm/table1_1.html

Project Overview Where is Biomass Located in the US?

Mbrandt, A., A Geographic Perspective on the Current Biomass Resource Availability in the United States. 2005, National Renewable Energy Laboratory: Golden CO. Net Generation by Energy Source: Total (All Sectors). : http://www.eia.doe.gov/cneaf/electricity/epm/table1_1.html

Task 1: Biomass Preparation & Feeding Example of Preprocessing Results: Torrefaction

Before and After Grinding for 6 min in a 3" Ball Mill

Young's Modulus = 1.63 +/- 0.26

15

0.3

0.25

0.2

0.15

0.1

0.05

0

Mass Derrivative (mg/

Young's Modulus = 0.67 +/- 0.21 NATIONAL ENERGY TECHNOLOGY LABORATORY

Young's Modulus Measurement

Energy Consumption

** Energy consumption of the Ball Mill Instrument, not the actual grinding energy on the biomass materials

(17)

Young's Modulus of Biomass Materials

18

NATIONAL ENERGY TECHNOLOGY LABORATORY

Task 3. Gasifier Reaction Chemistry Influence of Co-Feeding on Gaseous Products

(SG + III#6, 900°C, 30 psi, Ar)

Task 3. Gasifier Reaction Chemistry

Influence of Co-Feeding on Gaseous Products

(SG + 111#6, 900°C, 30 psi, Ar)

Task 3. Gasifier Reaction Chemistry Product Distribution Trends

(SG + III#6, 900°C, 30 psi, Ar)

Task 4: Gasifier Materials

Refractory Material and Slag Testing

