

Advancing Clean Energy Technologies Oxy-Combustion Update

"We are passionate about innovation and technology leadership"

Denny McDonald *Technical Fellow, Oxy-combustion Lead Advanced Technology* Steve Moorman Manager -Business Development Advanced Technology

a Babcock & Wilcox company

Biomass

Systems

Oxy-combustion

Clean Energy Development activities

- B&W spin-off from McDermott complete end of July 2010
- Large-scale integrated test of Oxy-PC moving forward
- Oxy Reference Plant Study in progress
- DOE Oxy Retrofit Study complete 3rd qtr 2010
- B&W Fluor joint development activities on Econamine PCC process for retrofit applications – ongoing
- Program development for testing of B&W advanced amine solvents at the NCCC – testing to begin 2nd Qtr 2011
- Concentrated Solar DOE Molten Salt storage program in progress

Path to Commercialization Oxy-Coal

Relative to other power plant emissions CO2 capture is enormous.....

A 600 MW PC PRB coal plant generates < 1 ton/yr of Mercury</p> 8,000 tons/year of NOX

- **30,000 tons/year of SO2**
 - 150,000 tons/year of Ash
- 4,500,000 tons/year of CO2

CO2 storage adds another order of difficulty

The cost of large-scale tests for CCS is huge and the technical and financial risks for participants are proportional

CCPI – Round3 CCS Demonstration Projects

Host	Project	Plant Size	DOE Cost Share	Total Project Value	
		MWs	\$Millions	\$Millions	
Basin Electric	PCC	120	\$100	\$300	
Hydrogen Energy	IGCC	400	\$308	\$2,300	
American Elec Pwr	PCC	235	\$334	\$668	
Summit Energy	IGCC	400	\$350	\$1,730	
NRG	PCC	60	\$154	\$308	
Total	5	1215	\$1,246	\$5,306	

Challenges to Success

Funding

While Government money for Demos is available, dollar amounts are inadequate to fund a sufficient number of these very costly demonstration projects and the cost share required from the industry is major impediment to moving projects forward. DETOUR

Regulatory

The uncertainty of public policy regarding CO2 that will provide owners the ability to cover their financial investment severely limits the development and deployment of CCS technologies.

The Public

- Acceptance of transport and storage systems for large volumes of CO2 has not been established.
- Risks and liabilities for land owners regarding storage are uncertain

Scale of Effort

Do policy makers and the public really understand the scale (and cost) of the effort that will be required to have a meaningful impact on CO2 levels in the atmosphere?

B&W-AL Oxy-Coal Combustion R&D Summary

- 1.5 MWth small pilot testing with DOE 2001-2004
- ASU efficiency optimization program ongoing since 2007
- 30 MWth large pilot test completed 2008
- Computer modeling and simulation validated
- Greenfield and retrofit studies
- PC Oxy-combustion Power Plant study DOE/NETL 2007-1291
- Bottom-up Integration Study with ASU & CPU in 2008
- 1.8 MWth Oxy-cyclone testing in 2009
- CPU pilots at Lacq, Callide and BWRC (2008-2011)

B&W-AL Oxy-Coal Combustion R&D Summary

B&W-AL Oxy-Coal Combustion R&D Summary

Oxy-Coal Net Plant Efficiency

References: DOE/NETL 2007 - 1291 "Pulverized Coal Oxy-combustion Power Plants" Rev. 2, DOE/NTL 2007-1281 "Cost and Baseline for Fossil Energy Plants" Rev.1, and B&W/AL Integration Study

Oxy-Coal Net Plant Efficiency

References: DOE/NETL 2007 - 1291 "Pulverized Coal Oxy-combustion Power Plants" Rev. 2, DOE/NTL 2007-1281 "Cost and Baseline for Fossil Energy Plants" Rev.1, and B&W/AL Integration Study

Oxy-Coal Air Emissions

	Air-Fired	IGCC Plant (2)	Oxy-Fuel Plant	Air-Fired	Oxy-Fuel Plant
	Plant	w/CCS	w/CCS	Plant	w/CCS
Fuel Type	Bituminous	Bituminous	Bituminous	Sub-bit	Sub-bit
Steam Conditions (PSI/F/F)	3600/1100/1100		3600/1100/1100	3600/1100/1100	3600/1100/1100
Plant Performance					
Gross MW	598	745	733	604	733
Net MW	550	556	550	550	550
Net Plant Heat Rate (Btu/kWh)	8662	10505	10143	9250	10831
Capacity Factor (%)	85%	80%	85%	85%	85%
Conventional Emissions (Expected)					
NOx (lb/MBtu)	0.06	0.0470	Note 1	0.06	Note 1
SOx (lb/MBtu)	0.04	0.010	Note 1	0.08	Note 1
Particulate (Ib/MBtu)	0.015	0.007	Note 1	0.012	Note 1
Hg (lb/TBtu) (3)	0.784	0.571	Note 1	0.820	Note 1
CO2 Emissions (Expected)					
CO2 Removal Efficiency (%)	0	90.0%	92.5%	0	92.5%
CO2 Produced (Million Metric Tons/Year)	3.26	3.64	3.82	3.68	4.31
CO2 Captured (Million Metric Tons/Year)	0	3.28	3.53	0	3.99
CO2 Emitted (Million Metric Tons/Year)	3.26	0.36	0.29	3.68	0.32

1) Oxy emissions are below practical measurement limits

2) IGCC from GE IGCC system w/CO2 Capture per DOE/NETL-2007/1281 Report, Case 2

3) Air-fired emissions based on 90% removal expected

Oxy-Coal Demonstration

Thank You!

power generation group