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ABSTRACT 
 

Variable speed oil free screw compressors can be used in upstream oil and gas applications such as gas collection 

and flare gas recovery. The critical nature of these applications is such that the owners closely monitor the drive 

train of the package as long un-planned stoppages are extremely expensive. If any of the monitored parameters start 

to deviate from the norm then shut-downs and services can be scheduled in a timely manner preventing costly 

stoppages.  

 

This paper first describes the parameters monitored on the drive train as required by the international standards used 

by the oil and gas companies. The paper then leads onto an in-depth description of the instrumentation mounted on 

and even within the drive train, incorporating the main drive motor, gearbox and compressor, and how the 

instrumentation is monitored by a package machine condition monitoring system that interfaces with the package 

control system. As the final location of the instruments is often in extremely hazardous environments such as highly 

corrosive offshore marine environments or abrasive hot desert environments, and the compressors themselves are 

often compressing highly combustible gas such as methane or even hydrogen, the protection methods employed by 

the instruments to prevent explosion is then discussed.  

 

The multiple communications networks that allow the condition monitoring system to send its values to the package 

control system and the client’s distributed control system are also discussed. This discussion includes how the 

measured values make their way from the stand alone machine condition monitoring system to the compressor 

control system and how the two systems integrate with each other to protect the package before annunciating the 

system status to the client's distributed control system.  

 

Finally a full description is given on how these measured values impact on the running of the package with respect 

to the compressors service life and the control systems ability to maintain the process setpoints. A solution to the 

presented problem is then offered. 

 

 

1. INTRODUCTION 
 

The screw compressor is a positive displacement rotary machine which is made of three main parts: the compressor 

casing and a pair of meshing helical lobed rotors all of which are fitted tightly together. The clearance between the 

rotors themselves and the clearance between the rotors and the compressor casing is very small to reduce internal 

leakages which affect efficiency. The package main drive motor, in conjunction with a gearbox, drives the 

compressor’s internal timing gears which turn the rotors. The rotors are designed in such a manner that the cavity 

formed between the rotors is continually reduced during the revolution. Obviously any gas trapped within the cavity 

would be compressed as the rotors revolved. The process gas enters the compressor through a large inlet port, into a 

large cavity between the rotors and then as the rotors spin the cavity moves away from the inlet port and reduces in 

size where at the end of the rotor the cavity is at its smallest and passes over a discharge port to allow the 
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compressed gas to escape. The compressor produces a continuous flow of pulses of high pressure each time a high 

pressure cavity of gas passes over the discharge port. 

 

In an oil free machine there is no lubrication oil injected into the working chamber to lubricate the rotor motion; 

instead the rotors are kept out of contact with each other by means of timing gears in a separate chamber. The 

compressor cooling jacket, bearings and timing gears are all still lubricated but kept isolated from the working 

chamber. To isolate the working chamber from the bearings a series of mechanical seals are introduced between 

them. The cooling of an oil free compressor is not as efficient as the cooling of an oil injected compressor, even with 

a cooling jacket and hollow rotors to aid cooling. This lubrication oil supply is controlled by the package control 

system in general accordance with API 614 chapter 6 (2008). Oil free screw compressors, while more expensive 

than oil injected machines, they find their use in processes where contamination of the process gas is to be avoided.  

 

Screw compressors can be used in upstream, mid-stream and downstream oil and gas applications. The critical 

nature of these machines, both in cost to the end user in the event of an unplanned shutdown and in terms of the 

explosive nature of the process gas, means that condition monitoring equipment is used to constantly monitor the 

health of the drive train. 

 
Figure 1: A cut away diagram of an oil free screw compressor 

 

2. Machine Condition Monitoring Instrumentation 
 

2.1 Main Drive Motor 
On the main drive motor (MDM) the windings are protected by resistance temperature detectors (RTDs) located 

within the windings themselves. Duplex (two: one active and one spare) RTDs are provided for each winding in the 

event that if the primary RTD fails the cabling can simply be switched to the spare. The RTDs are routed from the 

windings housed within the motor stator out to their own junction box separate from the main terminal box.  

 

Within the RTD junction box are terminals to allow easy field connection. The junction box is certified as part of the 

motor certification for use within a zone 2 and zone 1 environment as designated by BS EN 60079-10 (2007). From 

the RTD junction box a blue sheathed cable is run directly back to the unit control panel (UCP) carrying the three 

RTD signals. The cable has a blue sheath as it contains intrinsically safe signals and all field cabling is terminated 

using flameproof nickel-plated brass armour glands complete with PVC shroud to protect it from the surrounding 

environment.  

 

The signal is then passed through a galvanic isolator, which limits the amount of energy supplied to the hazardous 

area, before being terminated into the MCM rack. In order to conform to the BS EN 60079-1(2007) certificate 

supplied with the motor [more specifically the certificates schedule of special conditions of use] then the motor must 

have temperature protection operational in order to trip the machine in the event of an over temperature situation. 

The motor is operated in environments where explosive gases could be present which have low ignition 

temperatures which is one more reason, other than to protect the motor windings from damage, to protect the motor 

from overheating. There are various methods to achieve this protection such as the RTDs could have been 

terminated into the VSD to protect the motor but to keep all drive train temperature monitoring following the same 

convention they were terminated into the MCM rack.  
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A Machine Condition Monitoring (MCM) piping and instrumentation diagram (P&ID) is shown in Figure 2. All 

MCM instruments are protected from explosion by using intrinsically safe methods (BS EN 60079-11, 2007) and as 

a result the instruments could be deployed into an extremely hazardous gaszone 0 environment (BS EN 60079-0, 

2006).  

 

 
Figure 2: Piping and Instrumentation Diagram (P&ID) of the MCM instruments used on the entire drive train  

 
2.2 Gearbox 
The gearbox is similarly fitted with duplex RTDs on the pinion Non Drive End (NDE) bearing; pinion Drive End 

(DE) bearing; pinion thrust bearing; bullgear NDE bearing and finally bullgear DE bearing. These RTDs monitor the 

temperature of the gearbox bearings to ensure that the bearings are in good condition as worn bearings or bearings 

starved of lubrication oil would result in a high bearing temperature due to an increase in friction. The gearbox 

RTDs are wired back from their bearings back to a junction box mounted on the side of the gearbox. The junction 

box is certified on its own to be used within a zone 2 or zone 1 environment but as it only contains intrinsically safe 

signals it can be deployed within a zone 0 environment. The gearbox MCM instruments are not limited to 

temperature monitoring; vibration monitoring is also provided in accordance with API 670.  

 

2.3 Compressor 
The compressor MCM instrumentation includes male and female rotor thrust bearing temperature RTDs run from 

the bearing and terminated into small Ex e junction boxes (BS EN 60079-7, 2007). From here the signals are taken 

to the main MCM junction box. The RTDs range is from 0 – 200°C. This range allows complete monitoring of the 

lubrication oil temperature of the bearings and within the range is a high temperature alarm limit and a high-high 

temperature trip limit that will first alert the operators to an abnormal condition then trip the machine before damage 

can occur to the bearings. 

 

The casing accelerometers, both the horizontal and vertical axis accelerometers, are fitted to the compressor casing 

and a bespoke, spiral wound armour cable is run from the accelerometer housing back to the junction box. The 

accelerometers require a -24 Vdc supply and send a scaled signal back to the MCM rack in the order of 10.2 

mV/(m/s
2
). The range of the accelerometers is from 0 – 490 m/s

2
 peak. Within this range there is a high vibration 

alarm limit and high-high vibration trip limit that will first alert the operators to an abnormal condition then trip the 

machine before damage can occur. 

 

The female and male rotor axial displacement probes use a proximity transducer system to transmit the measurement 

of the rotor axial displacement back to the junction box. The system itself consists of a probe, extension cable and 

proximitor sensor. The system provides an output voltage directly proportional to the distance between the probe tip 

and the observed conductive surface. It is capable of both static and dynamic measurements, and is primarily used 

for vibration and position measurement applications on fluid-film bearing machines but can also be used for 

keyphasor applications such as on the low speed and high speed shaft on the gearbox. 
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As with the other MCM signals a blue sheathed cable is run directly back from the junction box to the UCP carrying 

the signals. The signals are then passed through galvanic isolators before being terminated into the MCM rack. The 

compressor with its MCM instrumentation fitted is shown in Figure 3.  

 

 
Figure 3: Layout of machine condition monitor equipment on the compressor. Shown are the accelerometers, 

bearing RTDs and rotor axial displacement probes 

 

2.4 UCP Rack 
All of the MCM system instruments are cabled back to the Bentley Nevada 3500 MCM rack. This rack consists of a 

15 slot chassis mounted within the base frame of the UCP. The monitoring modules are inserted from the front but 

all cable terminations are to the rear of the modules. The MCM rack is powered using dual redundant power supply 

units (PSU) so that in the event one fails, the other immediately assumes duty so that the MCM system does not trip. 

The power supply modules can be removed and replaced under power so long as the redundant unit is fitted and 

powered.  

 

The MCM rack has a rack interface module (RIM) for programming and configuring the monitoring modules, relay 

modules and communication modules. The module takes around twenty seconds to reset the system which can 

become frustrating when multiple resets are required during the configuration period. After connection to the RIM 

via a laptop with the configuration software installed the ability to bypass alarms and trips of the individual inputs is 

available. This gives the ability to commission the machine, set-up the rotor axial displacement for the first time for 

instance, without being hampered by nuisance alarms. This is a very powerful feature and actual alarms or trips that 

would normally shutdown the machine could be suppressed using this feature and ruin the machine. The RIM also 

has a trip multiply input that if switched, and if configured in the software, multiplies the alarm and trip settings by 

either two or three. This trip multiplier can be used during the start-up of the main drive motor to allow the machine 

to move through its natural frequencies if required. The RIM has a status output contact that is wired back to the 

PLC that alerts the package control system if the MCM system fails. To prevent tampering the RIM module has a 

key switch that once the module has been commissioned the key switch can be locked and the key removed to stop 

access. Two communications ports are available on the RIM, one serial port is situated on the front of the module 

which allows system configuration and a second Ethernet port is located on the rear of the module to allow 

communication between the system and a Bently Nevada “System One” site monitoring package.  

 

The temperature monitor modules are where all RTDs of the MCM system are terminated. The radial vibration, 

axial displacement and casing accelerometer instruments are wired back to the proximitor seismic modules. The 

sixteen channel relay output module is installed to send hardwired signals to the PLC in the event of a serial 

communication failure. A communications module is fitted to provide a Modbus serial link to the PLC which allows 

individual instrument values and statuses to be transmitted over it. The physical layer of the system consists of one 
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master and one or several slave nodes “daisy chained” together. On this simple point to point network, commonly 

used in automation systems, the MCM rack is the slave node and the PLC is the master and is a very common 

topology (Kang and Robles, 2009). The Modbus link passes the measured values into a register within the PLC. 

 

3. Data Acquisition and Analysis 

 
Trends of the values measured by the MCM instrumentation are used to investigate the behavior and response of the 

machine to various process conditions. Trends of the package machine condition monitoring instrumentation during 

various stages of the project were gathered from the initial run up to and including commissioned runs on process 

gas in the Sahara desert. 

 

The previous section discussed getting data from the package instrumentation, either from the MCM instrumentation 

or the process instrumentation and putting it into registers within the PLC. When a laptop is connected to the PLC, 

done using the ControlNet to Ethernet bridge on the HMI, the laptop can be used to ‘go-online’ to the PLC. This 

allows the engineer to view the PLC programme live and watch values change as they happen and logic bits energise 

and de-energise. It also allows the engineer to create trends of the desired process parameters.  

 

The selected process values are recorded by configuring pens on the trending screen. The pens are then pointed to a 

particular tag within the program, the tag being the alias given to the MCM values to be recorded. The trends are a 

powerful tool in the analysis of plant performance. Clients contact the after sales service department describing a 

particular problem and send through a DCS trend as evidence. DCS trends invariably have long sampling times with 

anywhere from twenty seconds to five minutes per sample or sometimes even longer. This is due to the DCS having 

to record an entire refinery, or platform, process values and a high sampling rate would rapidly fill its memory. So in 

order to get a true picture of what is happening within the package an engineer is deployed to ‘go-online’ with the 

package PLC and record the actual process problem. 

 

3.1 Speed 
The PLC outputs an analogue 4-20 mA signal to the ABB ACS 800 variable speed drive (VSD). This VSD then 

increases the motor speed by increasing the frequency of the alternating current. This in-turn increases the speed of 

the compressor which is measured by the gearbox high speed shaft. The keyphasor sends the speed measurement 

back to the Bently Nevada MCM system and once registered here the circle is complete by sending the measured 

speed back to the PLC via the Modbus serial link to be trended. There is a small lag between sending the speed 

reference signal to the VSD and the main drive motor actually achieving this speed due to both the PLC and VSD 

controller settings and the inertia of the motor’s rotor, the gearbox gears and shafts and finally the oil free screw 

compressors timing gears and rotors. The measurement of the increased speed and the registering back to the PLC 

via the MCM system incorporates a further small delay.  

 

3.2 Rotor Axial Displacement 
During the completion of the bareshaft machine test the compressor has not been furnished with all of the machine 

condition monitoring instrumentation. During this test the axial displacement probe mounting holes are plugged so 

no information can be acquired on the rotor displacement at this stage. 

 

In the run up to the package test when a series of test runs are being performed, and the plugs have been removed 

and the axial displacement probes have been fitted, the probes can then be set-up by the test engineer. To set-up 

these probes, both the male and the female probes, it must first be understood that there is a certain amount of float 

on the compressor rotors and that the rotor position at start up is not necessarily the nominal rotor position during 

normal operation due to things like process loading and thermal expansion. For this reason, the compressor is 

allowed to start without any alarms and trips activated regarding the rotor axial displacement. After running for 

around half an hour, the system is deemed to have warmed up and the rotor should have floated to its nominal 

position so set-up can commence. 

 

3.3 Temperature 
The compressor journal bearing temperatures are monitored during the initial runs as a faulty bearing will first be 

highlighted by a high bearing temperature. During the package prestart operation, as the lubrication oil is being 
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pumped around the system without any heat being generated at the bearing, the bearing temperatures should match 

the manifold lubrication oil temperature. 

 

Once the package has started and the compressor rotors are spinning at over 8000 rpm the bearings generate their 

own heat and this, coupled with the lubrication oil being warmed as it flows over the compressor cooling jacket, 

leads the bearing temperature to rise. Conversely, when the compressor is stopped either due to a normal stop or a 

process trip stop, the bearings rapidly cool back down to the manifold temperature as they are fed continuously with 

lubrication oil during these sequences. However, it must be noted that if the compressor package is ever emergency 

stopped the auxiliary motors on the package also cease which prevents lubrication oil being fed into the bearings 

which would see the bearing temperature rise. 

 

3.4 Casing Vibration 
The compressor casing vibration is monitored by using the accelerometers mounted on the side and top of the 

compressor casing. These values are routed back to the PLC in the same manner as the previously discussed 

machine condition monitoring instrumentation. 

 

It was important to understand not only the vibrations inflicted on the compressor during start up to its minimum 

speed, but also as it ramped from minimum speed up to full speed. It is important to remember that during the 

compressor start sequence the package runs up to 50 % as quickly as possible with the machine totally unloaded, 

then after the operator has dealt with the manual valves within the process, the package is allowed to automatically 

load and vary its speed.  

 

In order to understand the relationship between the compressor speed and vibration, trends were recorded of the 

package during its initial 0 – 50 % ramp and of a ramp between 50 – 100 %. The 4-20 mA speed reference signal 

sent to the VSD from the PLC was manually inputted to 50 % or 12 mA for the purposes of this part of the test and 

stays at this value throughout the trend. This means that as soon as the VSD is given a start pulse from the PLC it 

will drive the compressor to this speed as quickly as possible. 

 

When the start pulse energises the VSD, the gearbox high speed shaft values pickup quickly and reaches 50 % speed 

in marginally over ten seconds. During this time the casing accelerometers experience no excessive levels of casing 

vibration the vibration in the horizontal plane is considerably greater than the vibration experienced in the vertical 

plane. 

 

 
Figure 4: The vibration versus speed values recorded at the compressor when starting at 50 and ramping to 100% of 

maximum speed during the factory test  

Unfortunately this was not the case during the recorded ramp between 50 % and 100 % as can be seen from Figure 

4. The system was in a state of equilibrium with the speed reference signal showing 50 %, the gearbox high speed 
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shaft showing approximately the corresponding speed of 4411 rpm, and the compressor X and Y casing 

accelerometers measuring 0.45 g and 0.3 g respectively. 
 

The 4-20 mA speed reference signal was then removed from manual control where the value is imputed via the HMI 

and put into automatic control which had been setup to temporarily use a 4-20 mA signal injected from a milli-amp 

current source as the speed reference signal. The 12 mA speed reference signal was then slowly increased up to 20 

mA with a corresponding rise in the gearbox high speed shaft keyphasor measurement up to 8715 rpm. However, 

during this particular ramp the trend demonstrates a massive spike between 7160 and 7828 rpm in terms of rotor 

shaft speed, or 82.2 % and 89.8 % in terms of PLC PID block output, or lastly 41.1 Hz and 44.9 Hz in terms of VSD 

frequency output. The vibration peak in the ‘x’ or horizontal direction during this speed is 200 % the nominal 

vibration when the motor is running at full speed and while the ‘y’ or vertical vibration peak is only around 170 % 

of the full speed nominal vibration it is still far from satisfactory. 

 

It can also be seen from Figure 4 that three smaller rises in vibration level occur during the ramp with peaks around 

60 %, 76 % and 95 % however these peaks either do not exceed, or only marginally exceed the nominal vibration at 

full speed and as a result of this are excluded from the analysis. 

 

Firstly there is a need to account for the increased level of vibration in the horizontal direction or conversely the 

reduced level of vibration in the vertical direction. The compressor is fixed to a plinth using vertical fixings with less 

support in the horizontal plane meaning the compressor is more stable in a vertical axis than it is in the horizontal 

axis. 

 

In API 619 (2004) a note is offered to the reader that the machines structural support may adversely affect the rotor 

vibration amplitude. While this seems to be the case regarding the compressor stool the document was intending to 

highlight that as a result of this the vibration measured during machine tests and even package tests on the factory 

floor must be compared with results taken from the packages final location as each may be influenced by the 

surrounding support structure or lack thereof. 

 

 

Figure 5: The vibration versus speed values recorded at the compressor when starting at 50 and ramping to 100% of 

maximum speed during the factory test 

 

Before discussing Figure 5 it should be noted that the vibration units have now been changed to their integrated 

speed values (m/s) instead of the (g) measured during the factory tests. Again from the ramp taken at site as the 

package is ramped from 70 % - 100 %. This time no current milli-amp injector was available and instead the speed 

control PID block was put into manual and the speed reference values were manually inputted to the HMI. The 
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speed reference signal was then slowly increased in increments of 5 % up to 100 % with a corresponding rise in the 

gearbox high speed shaft keyphasor measurement up to 8757 rpm.  

 

The reader will also note that prior to starting the ramp the vertical plane vibrations are larger than the horizontal 

plane vibrations which is the opposite of the vibration levels witnessed in the factory. This change can be attributed 

to the fact that the package is now bolted to a concrete plinth reducing any lateral movement but also to the fact that 

the client has now attached substantial amounts of process piping to the package suction and discharge piping that 

alters the dynamics of the package pipework which is connected vertically to the compressor. 

 

During this particular ramp the casing horizontal vibration raises to a small peak around the 80% of full speed but 

like the smaller peaks discovered during the factory ramp test this can be discarded from the analysis as it remains 

smaller than the full speed vibrations levels. However, again the ramp displays a large spike in horizontal vibration 

readings but this time between 7894 and 8252 rpm in terms of rotor shaft speed, or 90.1 % and 97.3 % in terms of 

PLC PID block output, or lastly 45.1 Hz and 48.7 Hz in terms of VSD frequency output.  

 

The vibration peak in the ‘x’ or horizontal direction during this ramp has decreased significantly but is still nearly 

one and a half times the nominal vibration when the motor is running at full speed and with the ‘y’ or vertical 

vibration peak also reduced so it is now only around 110 % of the full speed nominal vibration at its peak. It should 

be noted that there were no excessive vibrations recorded either from the horizontal or vertical casing 

accelerometers during the stopping sequence. 

 

4. Solution and Conclusion 
 

Only after developing the control system and in particular its ability to acquire and record the process and machine 

condition monitoring values could a practical investigation for critical speeds within the operating range be 

conducted. Evidence of the critical speed was found while testing on the factory floor but it was not until the screw 

compressor package was sited, levelled and grouted to its plinth in the Sahara desert with all of its process pipework 

connected until the true extent of the critical speed within the operating range could be gauged. 

 

From analysis of the factory ramp and the site ramp the vibration levels appears to cover a 7 % window of the speed 

range but has shifted up the speed range from the factory to the site and while the overall level has reduced it  will 

still be prudent to remove this speed window from the control systems operating range. 

 

 
Figure 6: Using the PLC ladder logic to step the VSD over the critical speed found during the site test run 
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By removing this speed window from the compressors operating range its ability to control the client’s suction 

pressure at the required setpoint is now limited. Avoiding the critical speed between 45.1 and 48.7 Hz can be 

achieved by utilising one of two methods. One method is by using the PLC programming software and modifying 

the code to step over this critical speed. As mentioned previously the VSD had its own PID controller within the 

PLC code. This PID controller outputted to a register, as a percentage, how fast the VSD was to run before an 

analogue scaling block changed the percentage to a 4-20 mA signal that was sent to the VSD. Unfortunately the PID 

block within the PLC programme does not have the ability to configure output values that are to be avoided. So the 

code was developed in the next rung below the speed control PID to monitor the output from the speed controller 

and if the output is between 90.1 and 97.3 %, which corresponds to the 45.1 and 48.7 Hz, then a value of 97.3 % is 

moved into the PID output register instead. On the same rung as the move instruction is moving the value of 97.3 % 

into the PID controller output a Boolean logic bit with the tag AVD_CRIT_SPD is energised showing that the PLC 

is now having to avoid the critical speed. This has the effect where the PLC never instructs the VSD to run at or 

around the critical speed but instead steps beyond it to run slightly faster. Figure 6, shows the PLC code used to 

avoid the critical speed. 

 

Stepping the equipment around the critical speeds and thus avoiding peaks in vibration is a common technique. 

Indeed the other method that could have been used to avoid the critical speed was the ABB variable speed drive’s 

built-in critical speed avoidance software function (ABB, 2009). This function is not uncommon with most VSD 

manufacturers offering something similar. However, in this application by simply avoiding the critical speed, 

including by using the method adopted by the authors by means of the PLC code, it has a negative effect on the 

suction pressure the package is required to maintain.  

 

By running the machine faster than the desired speed the suction pressure drops below the suction pressure setpoint 

and hence eventually slows the machine down to let the suction pressure build back up. When the suction pressure 

set-point is achieved and the machine again needs to run at the critical speed the control system again increases the 

reference speed to avoid the critical speed and so the cycle continues with the VSD hunting around the critical speed 

continually slowing down to let the suction pressure build back up then running too fast and thus reducing the 

suction pressure. If a value of 90.1 % was used i.e. the slower of the two threshold speeds then the suction pressure 

would have artificially built up as it ran below the desired output. Eventually the measured suction pressure would 

cause the controller output to breech 97.3 % with the VSD then increasing speed to dissipate the suction pressure. 

As the VSD speed increased and the suction pressure duly dropped then the controller output would again fall back 

into the critical speed band forcing the output back to 90.1 % and the hunting cycle would start again. 

 

A solution to prevent this hunting and allow the motor to run constantly at a higher speed yet maintain the desired 

suction pressure was found. The control philosophy stated earlier that when the VSD is at minimum speed and the 

measured suction pressure is still lower than the suction pressure set-point then the package recycle control valve is 

opened. This was to allow the suction pressure to build back up by recycling the discharge gas back to the suction 

side. The recycle control valve is again controlled by its own PID controller within the Allen-Bradley Control Logix 

PLC. An analogue 4-20 mA signal is sent from the control panel to the Ex ia rated current to pneumatic converter on 

the control valve as a reference signal where 4 mA represents the control valve being 0 % open and 20 mA 

represents the control valve being 100 % open. The PLC programme was changed so that when the speed controller 

output is between 90.1 and 97.3 %, then not only is the speed reference signal set at 97.3 % but the recycle control 

valve is now also enabled to control. This allows the compressor to run faster, adversely affecting the suction 

pressure, but then compensating this at the same time by opening the recycle control valve to allow some of the 

additional discharge gas back to replenish the gas from the suction side that is removed due to the faster VSD speed. 

Again, looking at if a value of 90.1 % was used as the fixed speed and the suction pressure was allowed to build up 

there would have been no way of compensating for this with the recycle control valve or indeed any of the existing 

plant or instrumentation other than to allow the compressor to increase speed once the high end of the critical speed 

had been breached which simply results in the VSD hunting around.  

 

When the recycle control valve is in operation to replenish the excessively depleted suction pressure and compensate 

for the increased speed but the speed controller moves the PID controller output away from the critical speed, which 

could be as a result of change in suction pressure set-point, change in suction pressure from the well-head or 

upstream disturbances such as flare control valves then the system responds accordingly. The VSD will change 

speed and again this will depend on the type of disturbance where an increase in the suction pressure set-point would 

see the VSD slow down and a decrease in the suction pressure set-point would see the VSD speed up. At the same 
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time as the VSD is responding to the system disturbance the recycle control valve will close as the recycle control 

valve is only available to operate when the speed controller output is between 90.1 and 97.3 % or equal to 50 % 

which equates to the VSD minimum speed. At all other times the PLC sends a 4 mA signal to the control valve to 

ensure it stays closed. 

 

Normal control of the recycle valve is enabled when the VSD equals 50 % speed, then the recycle valve will be used 

to try and control the suction pressure in a cascade style control technique. However, as just discussed, when the 

speed controller output is outputting a signal between 90.1 and 97.3 Hz the recycle valve control must be enabled to 

replenish the suction pressure so the AVD_CRIT_SPD bit it then used to energise the recycle valve controller. 

During normal operation when the suction pressure is being controlled by means of the variable speed drive a value 

is written to the recycle valve output that prevents it from opening. Obviously, when the speed controller is 

outputting a value between 90.1 and 97.3 % and the system is trying to open the valve, this value has to be prevented 

from getting to the valve output so an AVD_CRIT_SPD normally closed logic bit is inserted into the rung between 

the comparison and move instructions that write this value. When the AVD_CRIT_SPD output is energised in the 

speed controller routine, this normally closed logic bit opens and prevents the valve from being instructed to close, 

allowing the recycle valve controller to operate freely. 

 

Failure to avoid the critical speed would mean the compressor would suffer the increased vibration levels and the 

resultant consequences. The time spent running at the higher vibration levels would have depended on a 

combination of factors including: the well-head suction pressure, system disturbances and suction pressure set-point. 

Running a compressor at high vibration levels reduces the life of the bearing due to the increased forces which is 

why expensive machine condition monitoring systems are installed and oil analysis is carried out on the lubrication 

oil. 
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