Calabasas Gas-To-Energy Facility

Mark Hughes, Solar Turbines
Dave Czerniak, LA Sanitation Districts
Mark McDannel, LA Sanitation Districts

1/20/2011
• Sanitation Districts
• Project Background
• Plant Design
• Project Timeline
• Operation and Lessons Learned
• Summary
Agenda

- Sanitation Districts
- Project Background
- Plant Design
- Project Timeline
- Operation and Lessons Learned
- Summary
- 23 independent districts
- Manages wastewater and solid wastes
- 1,400 miles of main trunk sewers
- 3 operating landfills
- 3 closed landfills
- 2 recycle centers
- 3 materials recovery/transfer facilities
- 2 refuse-to-energy facilities
- 7 landfill energy recovery facilities
Districts’ Industry Advances

- 1970’s: worked with EPA to develop gas collection system designs
- 1980’s: first gas-to-energy facilities, both landfill and digester gas
- 1990-2000’s: microturbine and fuel cell demonstration projects
- 2010: Calabasas GTE facility
Agenda

- Sanitation Districts
- **Project Background**
- Plant Design
- Project Timeline
- Operation and Lessons Learned
- Summary
• Began operation in 1961
• 20 millions tons in place
• 505 acres
• 850 tons/day
• 30 more years
• 5600 SCFM
• 25-28% methane
• All that gas...going to waste
• Boiler/steam turbine not viable
• No other technology available
• Emissions regs too:
 – GT BACT: 25 ppm NOx, 130 ppm CO
 – Recips: bigger emissions problems
June 2004: approached Solar Turbines
Suggested modifying Mercury 50
Basis:
- Centaur 40 GT experience at Puente Hills
- Recuperated cycle: high efficiency
- Demonstrated low emissions (natural gas)
Convinced Solar to try
Agenda

- Sanitation Districts
- Project Background
- **Plant Design**
- Project Timeline
- Operation and Lessons Learned
- Summary
• 3 turbines (one for growth)
• 3 fuel trains w/natural gas mixing
• 3 stages of compression
• Water removal
• Siloxane removal: passive silica gel towers
• CEMS for NOx
• Control room/maintenance building
• Gas turbines: Solar Turbines
• Compressors: Vilter
• Gas chilling and drying: Johnson Thermal
• CEMS: CISCO
• Engineering: Jacobs Carter & Burgess
• Construction: Hobbs Bannerman
Construction: The Beginning
Building the Base
Up And Running…
Agenda

- Sanitation Districts
- Project Background
- Plant Design
- **Project Timeline**
- Operation and Lessons Learned
- Summary
Project Timeline

- 06/17/04: Ed Wheless’ suggestion to Solar
- 10/12/06: Biogas Mercury 50 released
- 01/23/07: Calabasas project kickoff
- 07/28/07: Engineering contract awarded
- 11/27/07: Final permits issued
- 01/07/09: Construction commenced
- 06/01/10: Start plant commissioning
- 07/12/10: Commercial operation
• Sanitation District
• Project Background
• Plant Design
• Project Timeline
• **Operation and Lessons Learned**
• Summary
• 2 of 3 turbines operate continuously

• Plant output: 9.5 MW gross, 7.6 MW net

• Emissions:
 – 7 ppm NOx (0.08 g/bhp-hr)
 – 3 ppm CO (0.02 g/bhp-hr)

• Fuel quality: ~260 Btu/ft³

• Plant availability to date: 95%

• Used 99% of available LFG last 3 months
Lessons Learned/Issues

- Equipment delivery issues
- Construction delays
- Design coordination
- Water ingestion in process piping
- Oil carryover from compressors
- Compressor motor bearing failure
- Failed wire nut in GT enclosure fan
Agenda

• Sanitation District
• Project Background
• Plant Design
• Project Timeline
• Operation and Lessons Learned
• Summary
What Did Project Accomplish?

• It didn’t:
 • Invent the cell phone
 • Or the laser beam
 • Perfect open heart surgery
 • Or find the cure for the common cold
 • Reinvent the wheel
 • Leave the state-of-the-art untouched
What Calabasas Did Do…

And these breakthroughs were set with 260 Btu/ft³ fuel
Contact Information:

Mark McDannel – 562-908-4288 ex.2442
mmcdannel@lacsd.org

Dave Czerniak – 562-908-4288 x 2447
dczerniak@lacsd.org

Mark Hughes – 619-595-7537
mhughes@solarturbines.com