

NeuCo/GE Boiler Optimization Technology Overview and Results

July 18th, 2016

Imagination at work

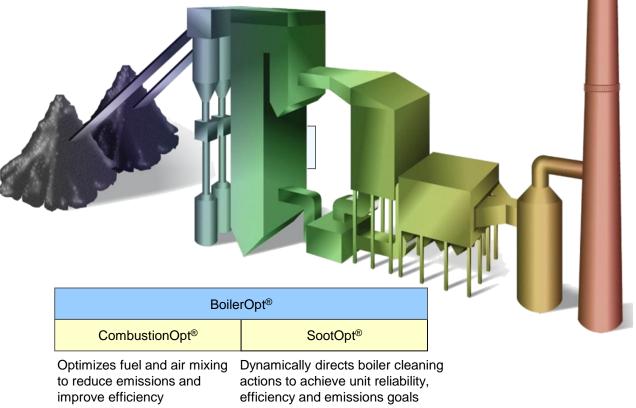
NeuCo, Inc./GE Power Collaboration

NeuCo - Power Optimization Market Leader

- Only company 100% dedicated to power optimization software
- More than 120 active optimization systems
- 100% technology ownership and strong patent position
- Two U.S. Dept of Energy projects totaling \$38M investment

GE Power

- Leader in Industrial Internet design with defined the technical roadmap for exploiting big data
- Coal-fired boiler OEM and engineering services leader
- Asset monitoring capability
 - 2000+ units monitored remotely 24 X 7 X 365
 - Local Field Service presence


NeuCo / GE Power technology Operating at Cholla and Jim Bridger

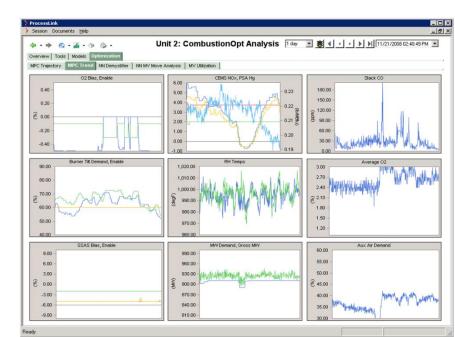
Boiler Optimization

- Coal units are tightly regulated and unique
- NeuCo and GE collaborating on advanced artificial intelligence and controls to improve client profitability and reduce risk
- We have proven products ready for implementation

Comparison of Functionality for Historical and Current Boiler Optimization Systems

Functionality	PowerPerfecter	CombustionOpt V1	C'Opt Basic Fuel & Air Optimizer	BoilerOpt	
Modeling & Optimization Method	MPC Only	Neural Only	Neural + MPC	Neural + MPC + Rules Engine	
Parametric Testing	Manual Step Testing	Automated Design of Experiments (DOE)	Automated DOE w/Confidence Testing	Automated DOE w/Confidence Testing	
Model Validation	NA	Committee Validation	Committee + Cross Val + MV Confidence	Committee + Cross Val + MV Confidence	
Data Storage	Reliance on 3rd Party Historian	Reliance on 3rd Party Historian	Integrated Scaleable Historian	Integrated Scaleable Historian	
Data Communications	Limited Communications Options	Limited Communications Options	OPC and Many Additional Paths	OPC and Many Additional Paths	
Support	Software Support Only	One Level of Customer Support	Tiered CSS Offering	Tiered CSS Offering	
Remote Monitoring	No Support Monitoring	Ad Hoc Support Monitoring	Automated Alerts Management	Automated Alerts Management	
Alerts	No Phone/Email Alerts	Ad Hoc Phone/Email Alerts	Automated Email/Smartphone Alerts	Automated Email/Smartphone Alerts	
Reporting	Customer-Generated Reports Only	Quarterly Reports	Weekly KPI-Oriented Reports	Weekly KPI-Oriented Reports	
Scope of Systems Optimized	Combustion-Only, Limited # of MVs	Combustion-Only, Unlimited # of MVs	Combustion-Only, Unlimited # of MVs	Integrated Combustion & Boiler Cleanliness	
Zone Selection Method	NA	NA	NA	Rule-Based Zone Selection	
Blower Selection Method	NA	NA	NA	Rule/Neural Blower Selection	
Blower Selection Criteria	NA	NA	NA	Time Constraints & Cleaniness Factors	
Sootblower Problem Detection	NA	NA	NA	Sootblower Health Email Alerts	
Sootblower Analysis Tools	NA	NA	NA	Blower Effectiveness Analysis	

BoilerOpt Results


	Illustrative Boile	rOpt Result				
		Boiler	Gross	Priority	Heat Rate	NOx
	Plant/Unit	Туре	MW	At Time	Reduction	Reduction
	Big Cajun II Unit 2	Riley Turbo	575	NOx	0.50%	15.4%
	Spruce Unit 1*	CE T-Fired	600	HR	1.00%	4.7%
	Deely Unit 2	CE T-Fired	446	NOx	0.60%	19.4%
	Tolk Unit 2	CE T-Fired	600	NOx	0.81%	12.5%
	Harrington Unit 2	CE T-Fired	360	NOx	0.56%	14.0%
	Belle River Unit 2**	B&W Opposed	648	HR	1.63%	20.0%
	Jim Bridger Unit 2***	CE T-Fired	648	HR	0.69%	4.0%
*	Initial Spruce 1 Combu	stionOpt-only NC	0x reducti	on was 16.1	% when NOx v	vas top priori
**	Belle River 2 results me	easured by 3rd-p	arty engin	eering firm	as part of US-I	DOE CO2 stud
***	Current Jim Bridger Un	it 2 rosults aro Co	mbustion	Opt only		

CombustionOpt

Results achieved through Optimal mixing of fuel and air through MPC, adaptive neural networks and condition-based rules

- NOx reductions of 10-15%
- Boiler efficiency increase of 0.5% 1.5%
- · CO controlled to desired limit
- Better ramping and load-following performance
- Reduced opacity excursions
- Better control of LOI
- Better adherence to fan and
- Improved situational awareness
- Avoided tail-chasing behavior

👎 ProcessLink

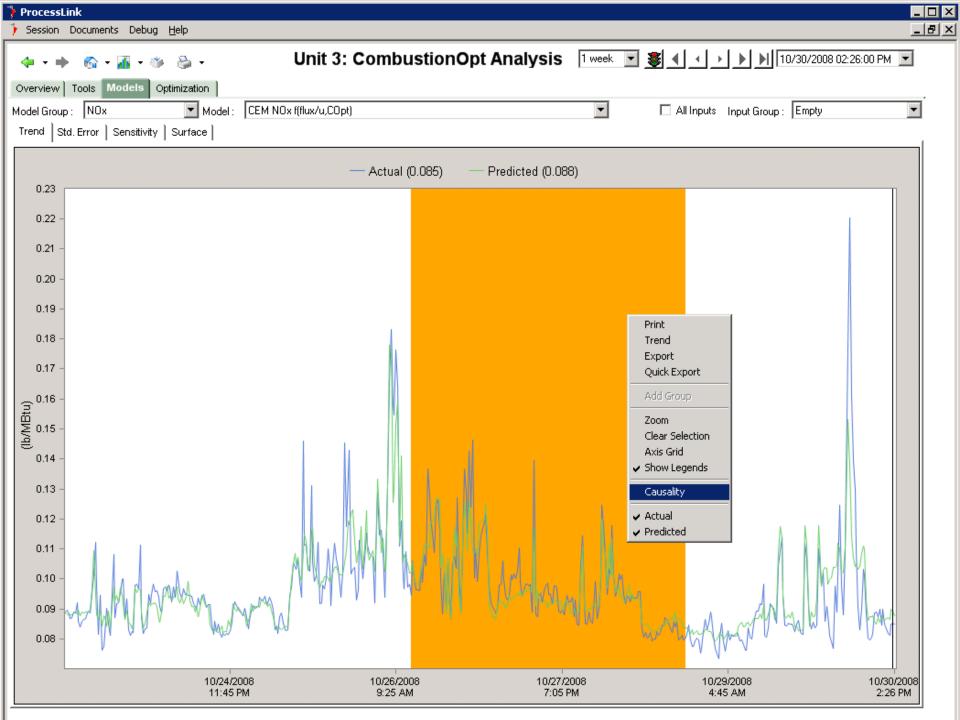
Session Documents Debug Help

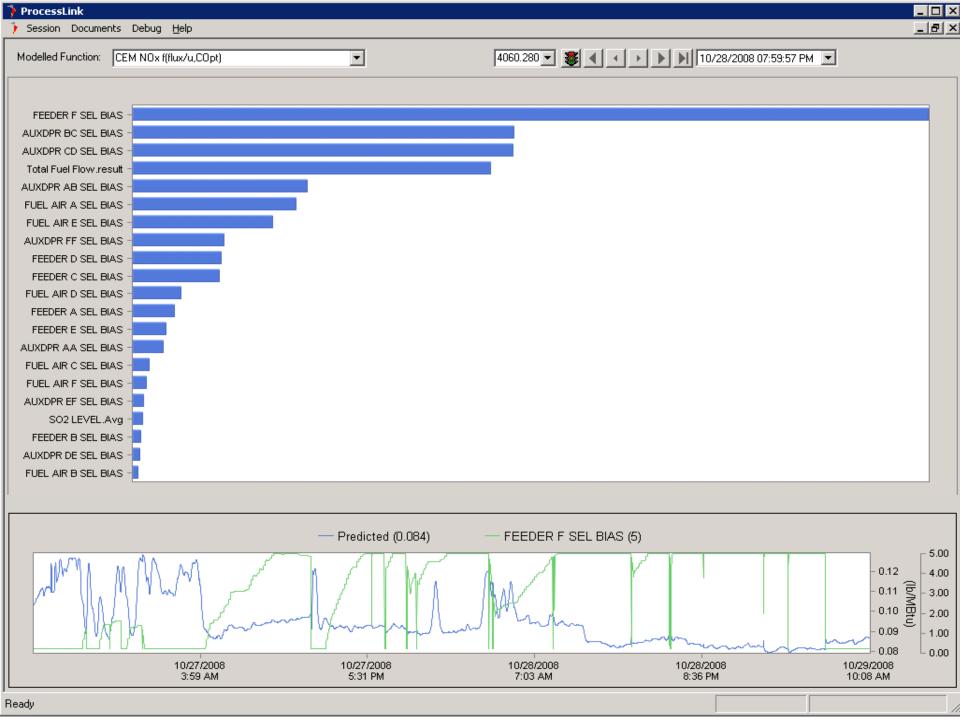
•

🖕 • 🔶 🚳 • 🚮 • 🚳 🦓 •

Unit 2: CombustionOpt Analysis 8 hours 💽 😻 4 4 4 1 10/30/2008 01:30:12 PM 💌

Overview Tools Models Optimization


MPC Trajectory MPC Trend NN Demystifier NN MV Move Analysis MV Utilization


Supervisory Profile:10/30/2008 12:52:09 PM

MV Name	Pre-Move Value	Post-Move Value	Delta Move	Step Size	Low Limit	High Limit	Heat Rate	NOx	Opacity	02
FUEL AIR A SEL BIAS	4.027	5		2	-5	5				
FUEL AIR C SEL BIAS	-4.027	-5		2	-5	5				
FUEL AIR B SEL BIAS	-4.027	-5		2	-5	5				
AUXDPR DE SEL BIAS	0.625	0.75		2	-10	10				
FEEDER A SEL BIAS	-7.085	-7.21		0.5	-8	5				
FUEL AIR D SEL BIAS	-4.029	-3.731		2	-5	5				
FEEDER B SEL BIAS	1.115	1.225		0.5	-8	5				
AUXDPR EF SEL BIAS	0.25	0.312		2	-10	10				
AUXDPR CD SEL BIAS	-0.375	-0.437		2	-10	10				
FUEL AIR E SEL BIAS	4.029	3.966		2	-5	5				
FEEDER E SEL BIAS	2.318	2.193		0.5	-8	5				
AUXDPR BC SEL BIAS	-0.469	-0.594		2	-10	10				
FEEDER C SEL BIAS	0.899	0.883		0.5	-8	5				
FEEDER D SEL BIAS	1.153	1.184		0.5	-8	5				
FEEDER F SEL BIAS	1.593	1.718		0.5	-8	5				
AUXDPR AB SEL BIAS	-0.11	-0.142		2	-10	10				
AUXDPR FF SEL BIAS	0.038	0.069		2	-10	10				
FUEL AIR F SEL BIAS	-0.657	-0.658		2	-5	5				
AUXDPR AA SEL BIAS	0.036	0.034		2	-10	10				
G SOFA TILT SEL BIAS	0	MV Disabled		1	-5	5				
GA SOFA DMPR SEL BIAS	0	MV Disabled		3	-15	15				
GB SOFA DMPR SEL BIAS	0	MV Disabled		3	-15	15				
H SOFA TILT SEL BIAS	0	MV Disabled		1	-5	5				
HA SOFA DMPR SEL BIAS	0	MV Disabled		3	-15	15				
HB SOFA DMPR SEL BIAS	0	MV Disabled		3	-15	15				
02 TRIM SEL BIAS	-0.57	MV Disabled		0.1	-0.5	-0.2				
WB FURN SEL BIAS	0	MV Disabled		0.1	-2	2				

Readu

•



SootOpt ®

Real-time closed-loop optimization of boiler cleaning equipment using expert rules, thermal calculations and neural networks

- Reduced and more tightly controlled APH temperatures
- Improved SH and RH steam temperature control
- Reduced attemperation sprays
- Heat rate reduction of 0.75% 1.50%
- Incremental NOx reduction of 2.5% 5%
- Avoided opacity excursions
- Reduced blowing of 10% 35%
- Avoided thermal stress from blowing surfaces
- Fewer tube-leak failures
- Improved situational awareness in t

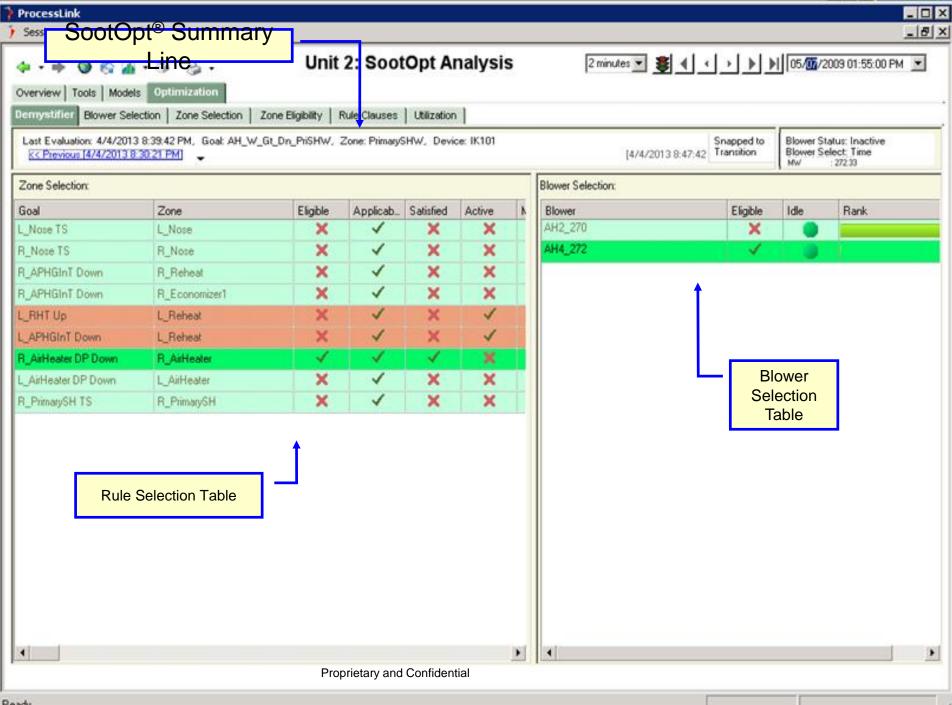
Overview: How SootOpt Works

Zone Selection

Rules-based: Fuzzy Heuristic First Principles Operating History

Blower Selection

Model-Prediction- and/or Rules-Based: Optimal Blower Start Operating History Effectiveness



Plant I/O

Zones are defined according to plant layout and sootblower media piping

One Blower Selection Module per Zone

Ready

ProcessLink								
🌶 Session Documents [Debug <u>H</u> elp							
🦛 + 🔶 😪 + 🚮 + 🚳	1 🏹 🕈	Uni	t 3: SootOp	t Analysis	1 day			3/27/2008 01:28:00
	_			-	,			
Overview Tools Models Optimization Demystifier Blower Selection Zone Selection Zone Eligibility Rule Clauses Utilization								
Goal	Zone	pray flo		X RH temp high	🗙 SH temp low	✓ RH temp low	✓ RH temp bel	X APH 3A DP
	RH_Platen	nay nam	of the second second					
	 RH_Furnace							
Reduce APH 3A Gas In Temp	SH_Convection		×					
Reduce APH 3A Gas In Temp	SH_Economizer		×					
Reduce APH 3A Gas In Temp	SH_Platen				×			
Reduce APH 3A Gas In Temp	SH_Furnace				×			
Raise RH Steam Temp	RH_Convection							
Raise RH Steam Temp	RH_Economizer							
Raise SH Steam Temp	SH_Convection							
Raise SH Steam Temp	SH_Economizer				 ✓ 			
Lower SH Steam Temp	SH_Furnace		 ✓ 					
Lower SH Steam Temp	SH_Platen		 ✓ 					
Reduce APH 3B Gas In Temp	RH_Furnace					×		
Reduce APH 3B Gas In Temp	RH_Platen					×		
Reduce APH 3B Gas In Temp	RH_Convection						✓	
Reduce APH 3B Gas In Temp	RH_Economizer						✓	
Limit Idle Time SH Furn	SH_Furnace				×			
Limit Idle Time SH Platen	SH_Platen				×			
Limit Idle Time SH Conv	RH_Convection		×					
Limit Idle Time SH Econ	SH_Economizer		×					
Limit Idle Time RH Furn	RH_Furnace					×		
Limit Idle Time RH Platen	RH_Platen					×		
Limit Idle Time RH Conv	RH_Convection							1

Strategic Investment with Measurable ROI

Reduces CO2 footprint

- 1% heat rate reduction saves fuel and reduces CO2 emissions 1%
- CO2 reductions made after 2012 are recognized by EPA Clean Power Rule

Lowers cost and increases reliability of NOx / CO control

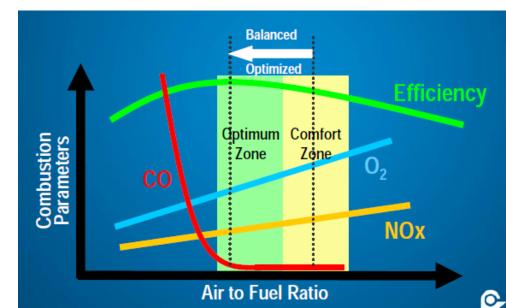
- BART / NAAQS
- Lower fleet NOx and required SCR / SNCR investment

EPA recognizes neural-net technology as a best practice technology

- Required in many consent decrees
- Included in DOE long term technical roadmap
- Encouraged by MATS rule

MATS compliance risk and cost reduction

• Reduce EPA data retention, required compliance tasks, frequency



DTE Belle River Case Study

Imagination at work

DTE Belle River Unit 2 Problem History

- Imbalanced combustion creates areas of high slagging in SH and RH pendants
- Multiple cleaning outages required every year
- Boiler operated in high excess air (30-35%) "comfort zone" to minimize slagging
 - Less potential for low air / high slag areas
 - Lower FEGT
 - High NOx, Heat Rate, CO2 emissions, etc.
 - Very large imbalances still resulted in slagging
- · Limited success with boiler tuning
 - Little process data
 - Engineer's / Operators stuck making "educated guesses"
 - Boiler conditions constantly changing
 - Constant "retuning" required
- Needed to find a way to exploit available data and control functionality

				Manual Tuning		Neuco	Tuning
	Baseline Heat Rate Test 07/27/10	Manual Tuning Heat Rate Test 07/28/10	Neuco Tuning Heat Rate Test 07/30/10	Manual Tuning Change (Absolute)	Manual Tuning Change (Relative, %)	Neuco Tuning Change (Absolute)	Neuco Tuning Change (Relative, %)
Gross Load, MW	647.954	647.948	645.058	-0.006	0.00%	-2.896	-0.45%
Net Load, MW	606.641	608.604	607.743	1.964	0.32%	1.102	0.18%
Auxiliary Power, MW	41.313	39.343	37.315	-1.970	-4.77%	-3.998	-9.68%
Raw Net Unit Heat Rate (Heatloss), BTU/kWhr	10517	10402	10331	-115	-1.10%	-186.0	-1.77%
Corrected Net Unit Heat Rate (Heatloss), BTU/kWhr	10393	10286	10224	-108	-1.0%	-169.184	-1.63%
Net Unit Heat Rate (Input/Output), BTU/kWhr		10362	Not Avail.	-131	-1.25%	Not Avail.	Not Avail.
Corrected Net Unit Heat Rate (Input/Output), BTU/kWhr	10458	10358	Not Avail.	-100	-0.96%	Not Avail.	Not Avail.
Nox, Ib/MBTU	0.2513	0.2025	0.2010	-0.0488	-19.43%	-0.050	-20.02%
CO, PPM	88	78	157	-10	-11.18%	68.200	77.18%
CO2 Intensity, Tons CO2/MWhr	1.069	1.047	1.043	-0.02	-2.06%	-0.03	-2.43%
Total Boiler Air Flow, klb/hr	6313	5926	5483	-387	-6.13%	-830	-13.14%
Average Excess O2, %	4.39%	3.23%	2.45%	-1.15%	-26.31%	-0.019	-44.18%
Excess Air, %	30.50%	20.75%	15.12%	9.75%	-31.97%	-15.38%	-50.43%

APS Four Corners Case Study

Imagination at work

APS Four Corners Case Study

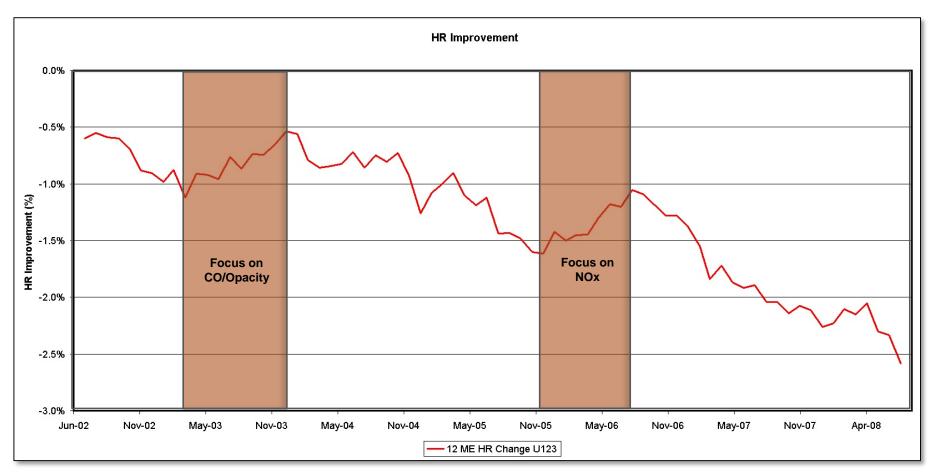
Initial success with CombustionOpt at Unit 3 led initially to deployment on Units 1-2

• All older front-fired 170-200 MW pulverized coal boilers

Success on Units 1-3 led to adding Units 4-5

Initial Objectives: HR & Opacity, NOx added later

Ten years of benefits led to widespread roll-out of new optimization products


- SootOpt, M'Opt, P'Opt at all five Four Corners Units
- C'Opt, SootOpt, P'Opt at all three APS-owned Cholla units

Also populating centralized fleet monitoring center

- "Extra eyes" and subject experts for coal units
- Remote monitoring and optimization for gas-fired units

APS Four Corners Heat Rate Improvement Over 7 Years

Overall APS Fossil Objectives & Initiatives

Fossil-wide performance improvement team established.

DTE Belle River Unit 2

B&W opposed wall-fired, balanced draft boiler

- Built in 1984
- Normal full load of 645 gross MW, Max load with overfire of 685 gross MW (turbine limited)
- Pulverized coal from 8 B&W MPS-89 pulverizers, 7 operate during normal operation
- 5 burners per mill, 40 total
- Originally 4 burner levels per wall, burners replaced with LNB and redistributed into 3 levels
- Top level of burners replaced with OFA ports (1/3 and 2/3 control dampers in each port)
- 6 single-point extractive type O2 probes at economizer exit
- LAND CO monitor and CEMS CO2 measurement in the stack

ABB INFI 90 distributed control system (DCS) with remote position control of

- Burner secondary air shrouds and OFA dampers
- OFA ratios / compartment dampers
- Mill feeder speeds and primary air dampers
- FD Fan inlet vanes for excess air/O2 control
- PI system stores plant data

CPS San Antonio Case Study

Imagination at work

Optimization History at CPS Energy

CombustionOpt initially installed on all existing coal-fired units

- Spruce: 546 MW CE t-fired w/Ovation DCS
- Deely: 2 x 446 MW CE t-fired w/Honeywell DCS

First installed at Spruce 1 in 2001

Installed at both Deely units in 2004

Primary objective of NOx reduction

Multivariate predictive control added in 2007

Additional objectives addressed through MPC

- Explicit steam temperature control
- Minimize attemperation sprays
- Incremental heat rate and NOx reduction

SootOpt added to Spruce in 2010 and Deely in 2011

ruce 2 project now getting underway

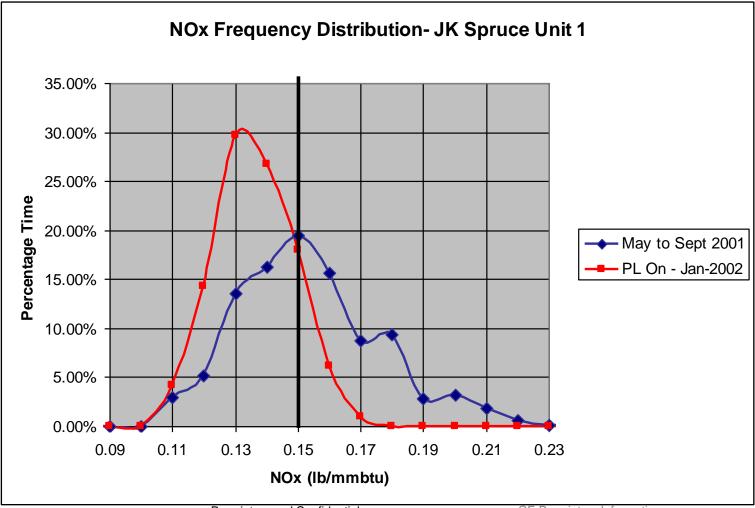
GE Proprietary Information

J.K. Spruce Power Plant

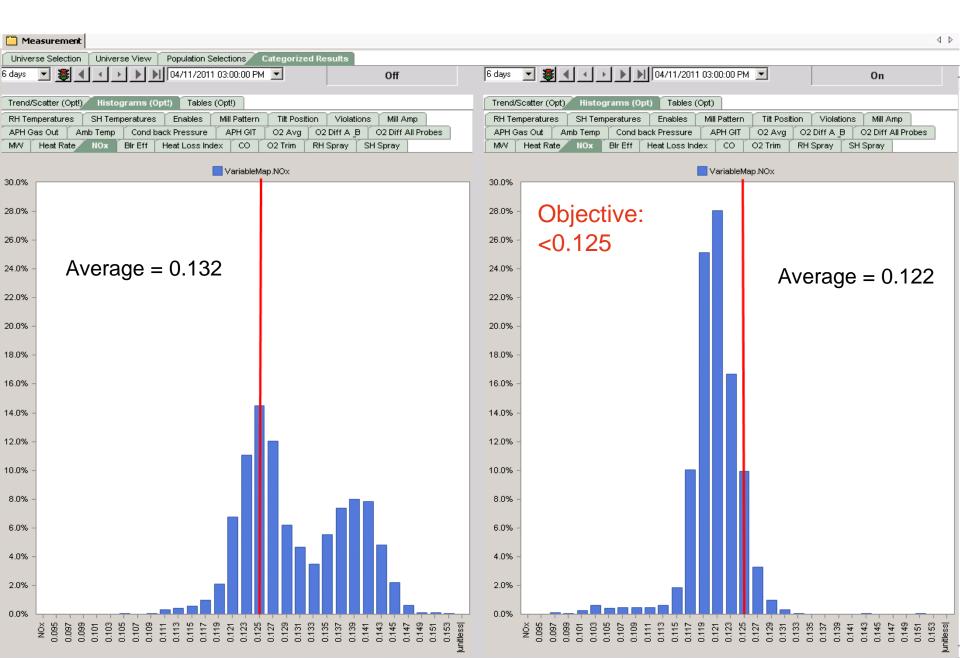
Calaveras Power Plant Complex, South East of San Antonio, TX

J.K. Spruce 1 commissioned in 1990

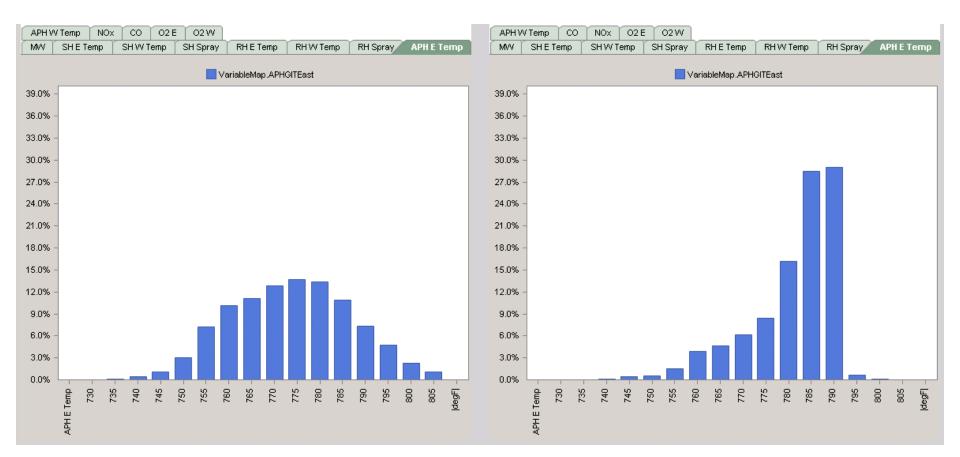
600 MW Alstom-CE T-fired unit


Emerson Ovation DCS

Spruce 2 commissioned 2011: 750 MW CE T-fired boiler with SCR

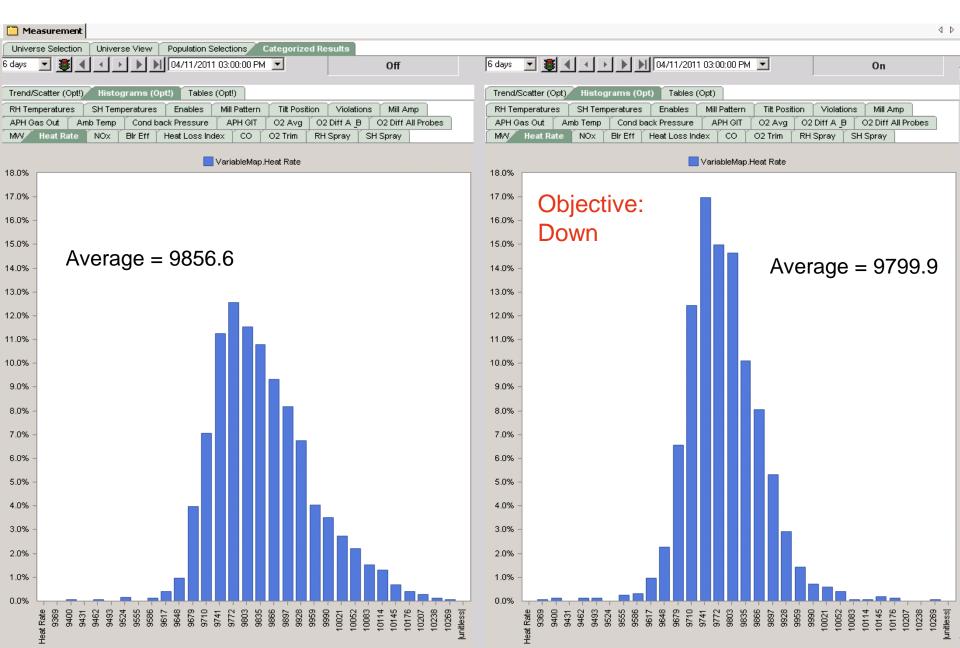


Initial CombustionOpt NOx Results at JK Spruce



Proprietary and Confidential

BoilerOpt Impact on Spruce 1 NOx

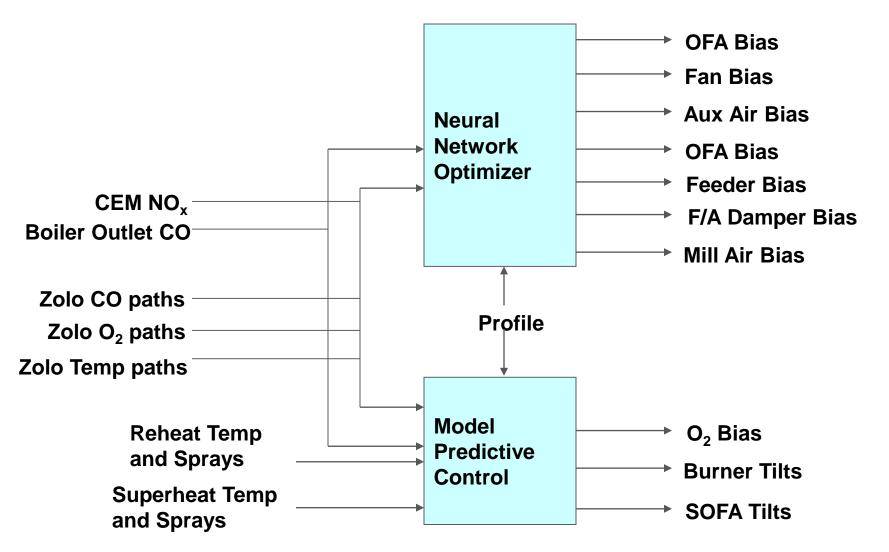


Spruce 1 East APH Temp SootOpt

BoilerOpt Impact on Spruce 1 Heat Rate

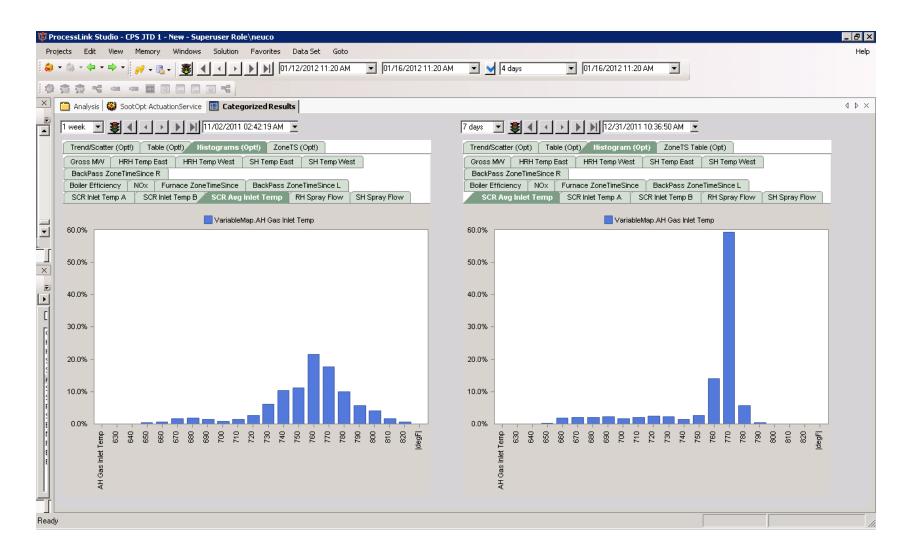
Spruce 1 BoilerOpt KPI Summary

Spruce Unit 1					
КЫ	Units	OFF	ON	Delta (ON - OFF)	Delta (%)
Gross MW	MW	571.15	564.57		
Heat Rate	Btu/kWh	9661.32	9556.74	-104.58	-1.08%
Blr Eff	%	83.99	84.77	0.78	0.93%
NOx	#/MMBtu	0.127	0.121	-0.006	-4.72%
СО	ppm	107.06	123.06	16	14.94%
O2 Avg	%	2.277	1.912	-0.365	-16.03%
RH Temp E	degF	1003.64	1003.88	0.24	0.02%
RH Temp W	degF	1002.96	1003.33	0.37	0.04%
RH Spray	klb/h	91.43	87.54	-3.89	-4.25%
SH Temp E	degF	1003.26	1004.12	0.86	0.09%
SH Temp W	degF	1000.16	1003.84	3.68	0.37%
SH Spray	klb/h	14.9	21.89	6.99	46.91%


JT Deely Power Plant

- Calaveras Power Plant Complex, South East of San Antonio, TX.
- J.T. Deely 1 & 2 plants commissioned in 1977 & 1978
- Boilers are identical 446 MW Alstom-CE T-fired units
- Common stack
- Low-NOx burner tips and
- Honeywell DCS

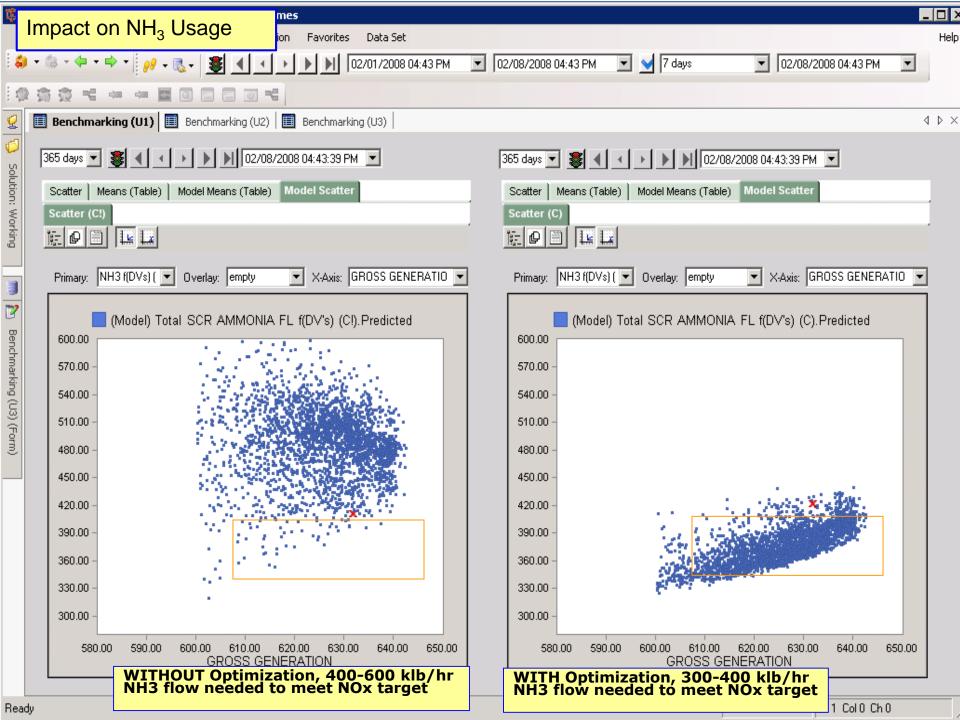
Adding MPC to CombustionOpt at Deely



On vs. Off Results after Adding MPC at Deely

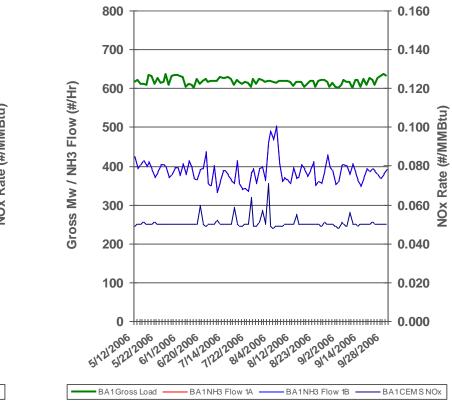
Performance Parameter	OFF	ON	CHANGE	
NO _X lbs/mmBTU at stack	0.138	0.112	-19%	
CO PPM at stack	8	52 (within limit)	44 ppm	
O ₂ % in back pass	2.7	2.3	-14.6%	
PerfIndex (Fuel Efficiency Index)	776	772	-0.6%	
MW Load	Full	Full	Minor fluctuations	

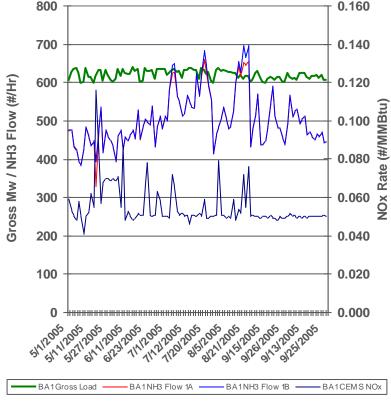
Deely 2 SCR Inlet Temps



SCR/SNCR Systems & Optimization

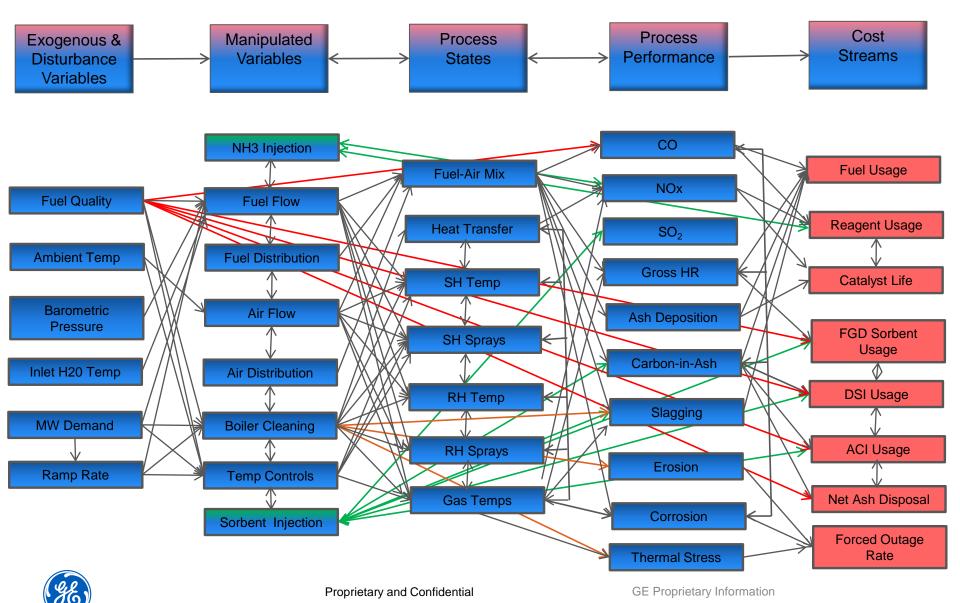
- Reduce Reagent Usage
- Lengthen Maintenance Intervals
- Avoid Ammonia Slip
- Reduce risk of Ammonium Bisulfate & Sulfur Trioxide deposits
- Control "Blue-Plume" Opacity Excursions
- Tighter, condition-based gas temperature control
- **Better Manage Interactions**





CombustionOpt Ammonia Reduction

Ozone Ammonia Flow - 2005



Boiler and Back-end Processes

38

Xcel Energy Case Study

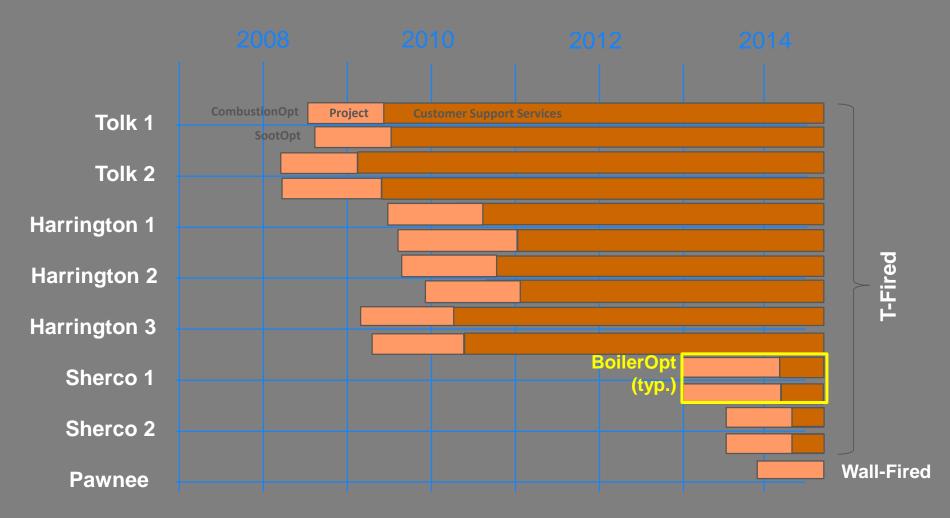
Imagination at work

Overall Xcel Optimization Initiative

Xcel SPS decided to adopt boiler optimization software (fuel-air and heat transfer components)

Tested NeuCo's BoilerOpt[®] system at Tolk station early-mid 2009

Applied to Harrington Unit 3 in October 2009


Rolled out to Harrington Unit 2 and Unit 1

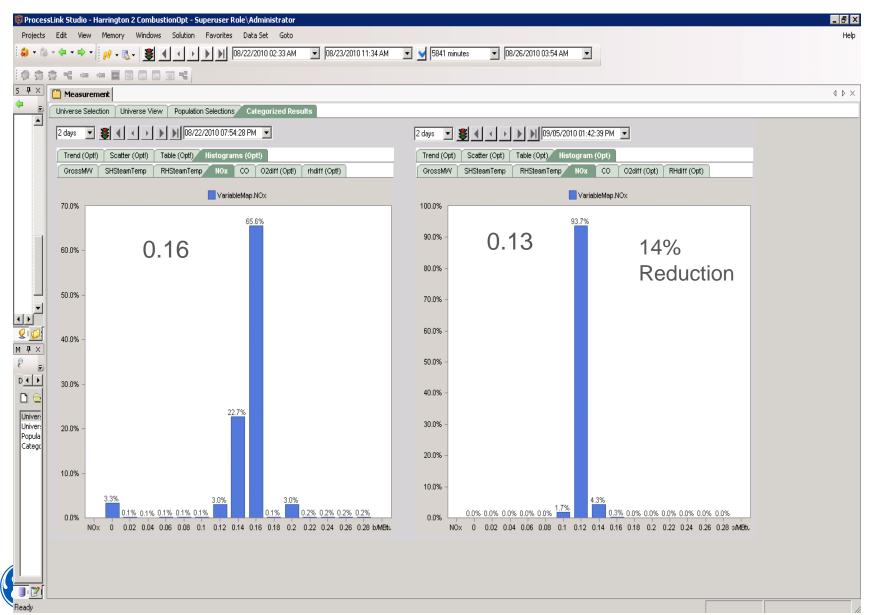
Xcel subsequently standardized on BoilerOpt as part of their fleet-wide boiler reliability program, with additional installations in Minnesota and Colorado completed and underway now

NeuCo at Xcel Energy Project Timeline

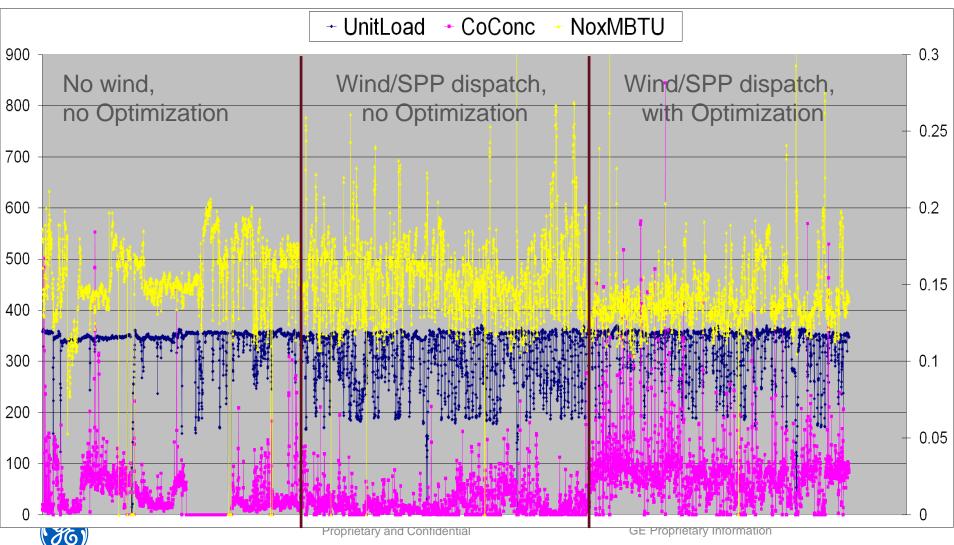
Timeline (Approximate) of NeuCo Installations at Xcel

BoilerOpt at Xcel Harrington

Units 1, 2 and 3 similar units:


- CE T-Fired boilers
- 360 MW each
- Often on AGC between 180 and 360
- 5 Pulverizers
- LNBs, CCOFA and SOFA
- Foxboro I/A DCS

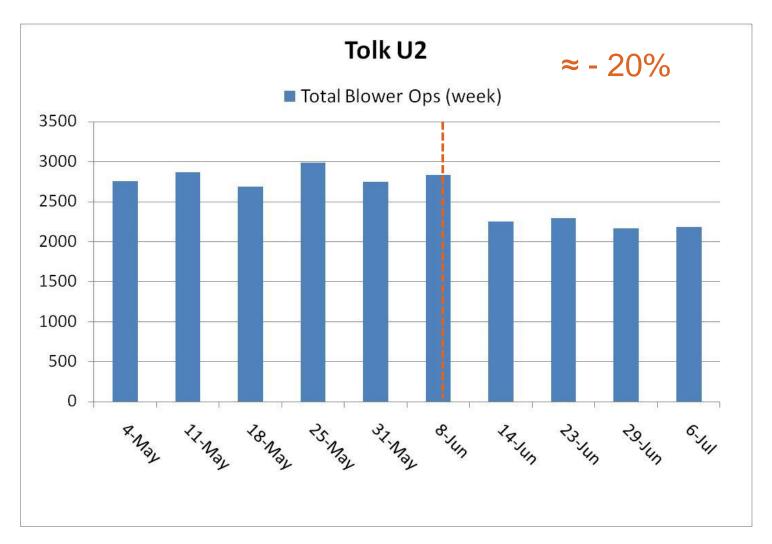
Baghouses on U2 & U3 ESP on U1



Harrington Unit 2 NOx ON/OFF

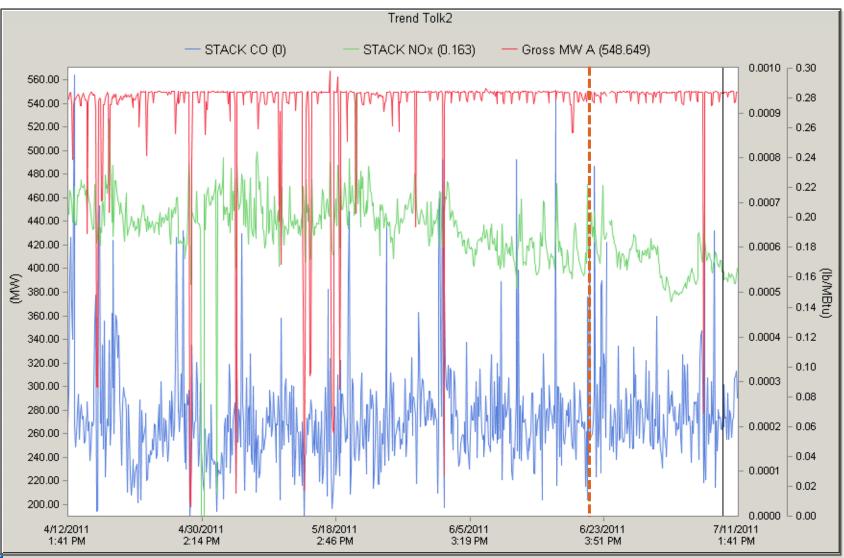
Harrington Unit 3 Long-Term Trends

Continuous Improvement Xcel Tolk example


Using new knowledge

After reviewing the results and our recommendations with plant

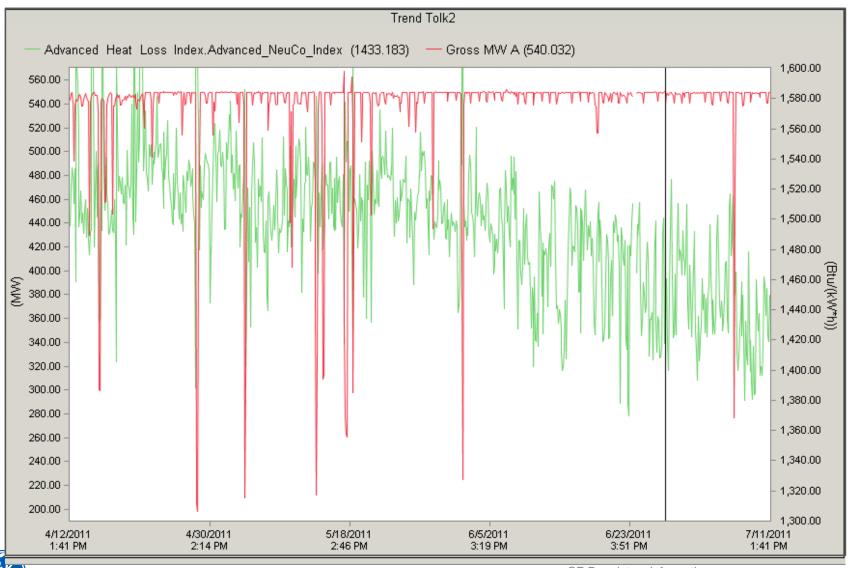
- Adjustments were made to the existing Zone/blower map in SootOpt to account for blowers affecting both RH and Platen sections.
- Adjustment were made to deal with a cross-over between DivSH and PlatenSH that had a noticeable effect
- Adjusted existing rules and thresholds
- Added rules that inhibit cleaning when section deltaTemp is at or above it's normal mean, given operating conditions
- Added rules that propose cleaning when section deltaTemp is sufficiently below it's normal mean


Recent Results Tolk Unit 2: Blower Counts

Proprietary and Confidential

Recent Results: NOx, CO

GE Proprietary Information


Recent Results: RH Temps

ee 86)

GE Proprietary Information

Recent Results: Heat Loss Index

*(***6**)

GE Proprietary Information

Standardize to Improve Fleet Performance

Best operator performance 24 X 7

Fleetwide KPIs and best practices instantiated in software

- KPI tracking common to all units
- Helps newer operators to master operating processes

Lower NOx and heat rate with less stress improves reliability

- Reduces tube leak related unplanned outages
- Minimizes volatility of operations

O&M flexibility and lower O&M cost

- Lengthens interval between required MATS testing, tuning and repair
- Advanced analytics enable early problem detection
- Secure web interface enables leverage on GE engineering expertise

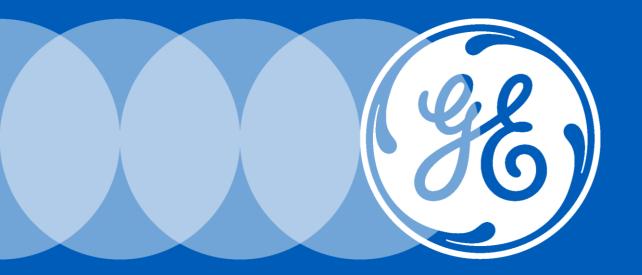
Chehalis Power Project and Currant Creek Power Plant operation supported by GE monitoring center ioutside Atlanta, Ga.

Favorable Regulatory Treatment

Lowers cost to end customer

- Reduces fuel and reagent costs
- More discretion in O&M expense and frequency
- Reduces CO2 and long-term Clean Power Rule compliance cost

In line with EPA approved technologies


• In rules, consent decrees and long term technology roadmap

Offered with flexible commercial terms to meet PUC requirements

- Capital purchase of perpetual license
- Annual service fee
- Lagged benefits sharing enables payments after benefits accrued

NERC CIP compliant installation / operation

