

Environmental Compliance using CEMS

ERM's Exton Office March 13, 2012

Overview

CEMS

- Why install a CEMS
- Common Analyzer Types
- MATS Compliance using CEMS

DAHS

- Compliance tool
- Reporting tool
- MATS Compliance using DAHS

Why Install CEMS?

- Permit Requirement
- New Environmental Regulations
- Real Time Data for Air Pollution Control (APC) device operation
- Closed Loop Environmental Control (CLEC)
 - ➤NO_x analyzer at the inlet to an SCR
 - ➤ SO₂ analyzer at the inlet to an FGD
- Coal Fire Detection System
 - ➤ Monitors the CO and O₂ concentrations of coal storage piles as an early detection system for fires

Possible Timeline for Environmental Regulatory Requirements for the Utility Industry

Continuous Emission Monitoring System

US EPA Definition of a CEMS

 The total equipment used to acquire data, which includes sample extraction hardware, analyzers, data recording and processing

hardware, and software.

Two Main Types of CEMS

Dry Extractive

Non corrosive gas streams Main components

- Sample probe (usually heated)
- Heated sample line
- Sample pump
- Gas conditioner (moisture removal)
- Analyzers

Dilution Extractive

Corrosive Gas streams

- Main componentsSample probe
 - Dilution orifice
 - Dilution air system
 - Sample line
 - Sample pump
 - Analyzers

Common Analyzer Types and Technologies

Oxides of Nitrogen (NO_x)

Chemiluminescense with an NO₂ to NO converter

Sulfur Dioxide (SO₂)

Ultraviolet (UV), Non-dispersive infrared (NDIR), Fluorescence

Diluent Gas (O₂/CO₂)

- >O₂ paramagnetic or zirconium oxide sensor
- >CO₂ –infrared

Carbon Monoxide (CO)

➤ Gas Filter Correlation

Volatile Organic Compounds (VOC)

➤ Flame Ionization Detector (FID), Gas Chromatograph (GC)

Stack Flow

 \triangleright Ultrasonic, Differential Pressure (\triangle P)

Opacity (COMS)

➤ Single or double pass Transmissometry

Mercury and Air Toxics Standards (MATS)

- ➤ 40 CFR Part 63, Subpart UUUUU National Emission Standards for Hazardous Air Pollutants: Coal- and Oil-Fired Electric Utility Steam Generating Units
- Also known as the Utility MACT
- Final rule published in the Federal Register on February 16, 2012
 - Effective 60 days from publishing in FR (April 16, 2012)
 - Affected sources have 3 years from this date to become compliant*

*note: it appears that the EPA will grant a one year extension for sources that are showing an effort to achieve compliance

Timeline for Compliance Mercury and Air Toxics Standard (MATS)

Covers Filterable Particulate Matter as a marker for heavy metals,
 HCl or SO₂ as a marker for acid gasses, and Mercury

UMACT – CEMS Additions

Added Measurements & Data Collection

PM CEMS- Filterable only (OR non-Hg metals)

 SO_2 – or HCl (If SO_2 does not meet limit)

Hg – CEMS or Sorbent Traps

Parametric Monitoring – Depends on Control device

Limits based on 30 boiler day rolling average

Particulate Matter (PM)

UMATS – PM Limits

EGU Category	P	M	Total Non-Hg	HAPS Metals
Existing Units	<u>lbs/mmBTU</u>	mg/Scm	<u>lbs/mmBTU</u>	mg/Scm
Coal (Not Low)	0.03	49.1	0.00005	0.1
Coal (Low Rank)	0.03	49.1	0.00005	0.1
IGCC	0.04	65.5	0.00006	0.1
Liquid Oil-Cont.	0.03	52.3	0.0008*	1.4
Solid Oil (Coke)	0.008	13.1	0.00004	0.1
NEW Units	Lbs/MWh	mg/Scm	Lbs/MWh	mg/Scm
Coal (Not Low)	0.007	1.1	0.00006	0.01
Coal (Low Rank)	0.007	1.1	0.00006	0.01
IGCC	0.07	11.1	0.0004	0.06
Liquid Oil-Cont.	0.07	NA	0.0002*	0.03
Solid Oil (Coke)	0.02	3.2	0.0006	0.10

^{*} Includes Hg PM

PM Compliance Options

- 1. Measure using PM CEMS
- Measure using a Continuous Parametric Monitoring System (CPMS) and perform annual compliance testing
- 3. Quarterly testing for PM/Non-Hg Hap Metals
 - ➤ PM filterable Method 5 test \$14K
 - ➤ Total HAP Metals Method 29 train \$15K/quarter
 - ➤ Individual HAP Metals (10) More \$\$ than Method 29 test

NOTE:

Annual Compliance test not required for Option 3

PM CEMS

Permissible Monitor Types for UMACT Compliance

- Light Scatter
- Scintillation
- Beta Attenuation
- Mass Accumulation

Back Scatter Extractive

Beta Gauge Extractive

Proprietary and Confidential

Back

Scatter

In-Situ

PM Model Types

Model	Туре	Wet Stack	Capital Cost	O&M Cost	Notes
SICK SP100	Light Scatter		\$	\$	Insitu
SICK FWE-200	Light Scatter	X	\$\$	\$\$	Extractive
TML LaserHawk	Light Scatter		\$	\$	Insitu
MSI BetaGuage	Beta	X	\$\$\$	\$\$\$	Extractive
PCME 181	Light Scatter	X	\$\$	\$\$	Extractive
Durag D-R 300	Light Scatter		\$	\$	
Preciptech CPM	Scintillation		\$	\$	CPMS/Leak Detector

Note: Thermo hybrid PM CEMS – Not commercially available.

PM CEMS Certification

PM CEMS must initially be certified in accordance with 40 CFR Part 60, Appendix B, Performance Specification 11

- Test to generate a correlation curve between the particulate concentration and the unit load
- Requires at least 15 Paired samples
 - 3 loads, 5 runs per loading level
 - usually requires more than the minimum number of runs
- Tests are time consuming and expensive (35k-50k), and often cause problems with the state regulatory agency

Ongoing QA/QC procedures outlined in 40 CFR 60, Appendix F, Procedure 2

- Absolute Correlation Audit (ACA) Challenge the analyzer with three filters
- Response Correlation Audit (RCA) Basically 12 run PS -11
- Relative Response Audit (RRA) 3 particulate tests, normal load

CPMS

MATS requires the same analyzer technology as a PM CEMS

Analyzer does not require certification

Compliance based on annual stack test results

- Parametric data recorded during annual compliance tests
- A parameter range is determined during the annual testing
- Unit is deemed compliant as long as the CPMS is operating within this range

PM CEMS vs. CPMS

UMATS allows for EITHER PM CEMS OR CPMS

Both technologies must use Light Scatter, Scintillation, Beta Attenuation, or Mass Accumulation

What is the Difference?

CPMS – Not a certified PM CEMS – Similar technology

Parametric limit is determined from annual testing

PM CEMS – Initial capital cost & testing is more \$\$

PM CEMS – Exempt from Opacity monitoring (Pending state approval)

HCL Compliance

UMATS - HCI/SO2 Limits

EGU Category	HCI		SO2 *	
Existing Units	<u>lbs/mmBTU</u>	ppm@ 3% O2	<u>lbs/mmBTU</u>	ppm@ 3% O2
Coal (Not Low)	0.002	1.9	0.2	105.5
Coal (Low Rank)	0.002	1.9	0.2	105.5
IGCC	0.0005	4.9	NA	NA
Liquid Oil-Cont.	0.0002	2.0	NA	NA
Solid Oil (Coke)	0.005	4.6	0.3	158.3
NEW Units	Lbs/GWh		Lbs/GWh	
Coal (Not Low)	0.4	0.04	0.4	20.5
Coal (Low Rank)	0.4	0.04	0.4	20.5
IGCC	2	0.2	0.4	20.5
Liquid Oil-Cont.	0.4	0.04	NA	NA
Solid Oil (Coke)	0.4	0.04	0.4	20.5

^{*} SO2 Limit only for units with FGD

Compliance Options

Continuously monitor HCL concentrations Continuously monitor SO₂ concentrations

- Coal fired sources already have SO₂ analyzers installed
- Requires that the source has a wet or dry FGD
- Once a plant opts in to using SO2 as a surrogate, the 0.20 lb/MMBtu limit becomes federally enforceable

some clients choosing not to use this option, due to the reduction

Thermo

of fuel flexibility

HCL

Limit is 0.002 lbs/mmBTU (~1.9 ppm) – Coal fired units Initial and Annual testing – Method 26 or 26A Annual compliance tests are \$14K – 3 – 1 hour runs HCI CEMS types:

- >FTIR Hot, wet extractive
- ➤ TDL In-situ, cross stack/duct
- ➤ Gas Filter Correlation Infra-red (GFC) Hot, wet extractive New probes/ports required for most applications HCI CEMS have been in use for many years on waste incinerator applications

HCI - FTIR

Fourier Transform Infrared

- ➤ Extractive, Hot, wet CEMS
- ➤ System consists of:
 - Rack mounted analyzer
 - Heated Sample Line
 - IR Source
 - Long path gas cell
 - Inferometer

- ➤ Detector creates interferogram of sample streamIssues HCl sample stream losses
 - >H2O interference, probe pluggage
 - >Slow response
 - > Setup and calibration Software ease of use
 - ➤ Lack of an EPA Performance Specification

FTIR Extractive System Instrument Air Back Flush Air 181 C Heated Sample Line Teflon or Glass coated tubing Calibration Gas **FTIR** Heated Analyzer Sample Inferometer Probe Gas Cell $\overline{\mathbf{x}}$ Stack ******* Computer: **Heated Sample** FTIR SW Pump **Probe Material:** |||| Heated Hastelloy or Inconel Sample Oven Pressure Regulator Cal Gas **Typical Hot/Wet Sample Conditioning System**

TDL – Tunable Diode Laser

Utilizes an in-situ IR analytical technique

<u>Advantages</u>

- Highly Selective
- Measure low concentrations
- •Eliminate cross-interference
- Single digit measurement
- Fast response

<u>Disadvantages</u>

- Can't monitor multiple parameters
- Difficult to calibrate on the stack
- Calibration standards unavailable
- Difficult to keep aligned
- Vibrations cause problems

Typical TDL Cross Stack Configuration

In-Situ Methods & Issues

Path length & particulate densities affect accuracy
Limitations on stack gas temperatures
Measurement must be temperature & path length corrected
Issues:

- Speciation and cross-interference
- Vibration, alignment high velocities
- Inability to be challenged with calibration gas

Mercury Compliance

UMATS – Hg Limits

EGU Category	Н	g
Existing Units	<u>Lbs/tBTU</u>	ug/Scm
Coal (Not Low)	1.2	1.97
Coal (Low Rank)	4.0	6.50
IGCC	2.5	4.81
Liquid Oil-Cont.	0.05	0.09
Solid Oil (Coke)	0.2	0.33
NEW Units	Lbs/GWh	
Coal (Not Low)	0.0002	0.03
Coal (Low Rank)	0.04	6.30
IGCC	0.003	0.56
Liquid Oil-Cont.	0.0001	0.02
Solid Oil (Coke)	0.002	0.32

Hg Compliance Options

Continuous Monitors must be installed

- Two technologies currently available
 - Hg analyzer
 - Continuous Sorbent Trap Monitoring System

Sorbent Trap System

Hg Monitoring – Technology Comparison

- Both Hg CEMS and Sorbent trap are certified using Method 30B
- Hg CEMS have continuous data Sorbent trap gives weekly updates (5-7 days)
- Sorbent trap is lower capital cost
- O&M costs for each similar Hg CEMS may be higher maintenance for some applications
- Control Device for Hg is a factor in deciding continuous vs. sorbent trap

Hg Monitoring - Cost Comparison

\$K	Hg CEMS	Hg Sorbent Trap
Capital	220	90
Installation	100	49
1 st year O&M	30	37
Total	350	177

Notes:

- 1. Certification costs are equivalent
- 2. Annual certification test costs are similiar
- 3. Sample Line costs are excluded
- 4. Cost of air compressor for Hg CEMS should also be considered
- 5. Sorbent trap need easy access to probe location

Hg CEMS

Typical design is a dilution extractive system

Analyzer measures elemental Hg

Measurement levels are extremely low - ppt

Ionic Hg is converted to elemental Hg

Hg CEMS are more complex than conventional CEMS

Capital, installation, and O&M costs are higher

Alternative to Hg CEMS is Sorbent Trap System (non-continuous)

Hg CEMS - Integrated Design

Hg Sorbent traps

- Can be used instead of CEMS measurement & also for ref. Method stack tester
- Uses dual train carbon traps mounted in tip of probe in stack
- Hg is collected on carbon traps and sent to lab for Hg analysis (every 5-7 days)
- Must measure sample flow, stack flow, and stack conditions
- ➤ Issues: Loose 5-7 days of data if traps fail QA tests
- ➤ Hg reading are batch sample I.e. Non-Continuous

Typical Sorbent Trap Monitoring System

Summary

Particulate Matter

- PM CEMS
- CPMS and Annual Testing
- Quarterly testing for PM or Non-Hg HAP Metals

Hydrogen Chloride

- FTIR More accurate but more expensive
- TDL- Cheaper and easier to integrate, may have some issues with data accuracy

Mercury

- Mercury CEMS Costlier method, however real time data is available
- Sorbent Trap System Cheaper method, however data is not available and it is more labor intensive for the plant personnel

CEMS Questions?

Data Acquisition and Handling System

Place to view, store, and reduce data from the CEMS

Can receive data directly from the analyzers serially, by ethernet, or via analog 4-20ma signals

Can also get an already calculated concentration/rate that is calculated externally (PLC)

Helps to ensure compliance through a series of alarms and episodes

General Data Acquisition Diagram

DAHS Functions

Data Validation Data Reduction

- uses pre-programmed formulas to reduce the data to the proper engineering units
 - ppm @ 15% O2
 - lb/hr
 - lb/MMBtu
 - TPY
 - lb/MWhr
 - lb/tons of clinker

Compliance Tool
Data Reporting

Data Validation

Determines if a valid hourly average can be calculated based on:

- Calibrations did they pass, has one been performed?
- Number of valid minutes in the hour
- > Faults
- Operating mode of the Unit SUSDMALF

Calibration Criteria Part 60 vs. Part 75

Part 60

> Pass/Fail

- >5% of span for 5 consecutive days
- > 10% of span once

> Frequency

 Must be performed daily(24 hours)

Part 75

▶Pass/Fail

- >2.5% of span for gaseous analyzers
- > 3.0% of span for flow monitors

➤ Frequency

 must be performed once every 26 online hours

Using Your DAHS to Track Compliance

- > Each permit limit set up as an episode
- > Alarms can be configured to warn users of an episode
- Real time display and historical trending screens
- Most DAHS packages are able to apply the required data substitution for periods of missing data

Alarms History

Sele	ct Options Statistics	Filter Si	lence Ackno	owled	lge Legend Help	
Page# 1						
□ AII	In Alarm	Out Alarm	Ack Alarm	Ву	Alarm ID	Description
	01/10/2004 07:37:16				3 SO2 Corr LO	SO2 Corr Exceeds limit - 0
	01/10/2004 07:37:05	07:37:15			3 SO2 Corr High	SO2 Corr Exceeds limit - 840
	01/09/2004 07:37:23	07:37:34			3 SO2 Corr High	SO2 Corr Exceeds limit - 840
	01/08/2004 07:37:14	07:37:24			3 SO2 Corr High	SO2 Corr Exceeds limit - 840
	01/07/2004 07:37:24	07:37:35			3 SO2 Corr High	SO2 Corr Exceeds limit - 840
	01/05/2004 07:37:04	07:37:15			3 SO2 Corr High	SO2 Corr Exceeds limit - 840
	01/04/2004 07:37:14	07:37:24			3 SO2 Corr High	SO2 Corr Exceeds limit - 840
	01/03/2004 07:37:24	07:37:33			3 SO2 Corr High	SO2 Corr Exceeds limit - 840
	01/02/2004 07:37:15	07:37:25			3 SO2 Corr High	SO2 Corr Exceeds limit - 840
	12/30/2003 07:37:01	07:37:11			3 SO2 Corr High	SO2 Corr Exceeds limit - 840
	12/29/2003 07:37:11	07:37:21			3 SO2 Corr High	SO2 Corr Exceeds limit - 840
	12/28/2003 07:37:12	07:37:21			3 SO2 Corr High	SO2 Corr Exceeds limit - 840
	12/26/2003 07:37:14	07:37:23			3 SO2 Corr High	SO2 Corr Exceeds limit - 840
	12/22/2003 07:37:12	07:37:21			3 SO2 Corr High	SO2 Corr Exceeds limit - 840
	12/21/2003 07:37:09	07:37:19			3 SO2 Corr High	SO2 Corr Exceeds limit - 840
	12/18/2003 07:37:10	07:37:20			3 SO2 Corr High	SO2 Corr Exceeds limit - 840
	12/15/2003 07:37:00	07:37:10			3 SO2 Corr High	SO2 Corr Exceeds limit - 840
	12/13/2003 07:36:53	07:37:03			3 SO2 Corr High	SO2 Corr Exceeds limit - 840
	12/12/2003 07:37:09	07:37:20			3 SO2 Corr High	SO2 Corr Exceeds limit - 840
	12/10/2003 07:37:10	07:37:19			3 SO2 Corr High	SO2 Corr Exceeds limit - 840
	12/08/2003 07:37:03	07:37:12			3 SO2 Corr High	SO2 Corr Exceeds limit - 840
	12/06/2003 07:37:11	07:37:21			3 SO2 Corr Hiah	SO2 Corr Exceeds limit - 840

Real Time (Display)

Trending Screen (Historical Trend Screen)

DAHS Reporting

Various Types of Reports Can be Configured on a DAHS

- ➤ QA/QC Audit reports calibration drift, CGA, Linearity, RATA
- Episode list report list of all permit limit exceedances
- CEMSUM report report that lists online time, periods of unit start up/ shut down and the % availability for each analyzer
- State specific reports that are configured on a project by project basis
- Federally Required Electronic Data Reports (EDR)
 - Some DAHS packages can automatically create Part 75 required EDR files for the user to upload the EPA's Emission Compliance and Monitoring Plan System (ECMPS)

MATS Data Reporting

Sources will be required to submit HCL/SO2 and Hg CEMS data to the EPA via ECMPS

➤ DAHS should be able to add these data and certification elements to the sources XML EDR file

for upload

Thank You Questions?

jkmillard@babcock.com 215-997-4212