

NATIONAL ENERGY TECHNOLOGY LABORATORY

DOE/NETL's Existing Plants Program CO₂ Capture R&D Overview

April 2, 2009

National Energy Technology Laboratory Where Energy Challenges Converge and Energy Solutions Emerge

- Only government owned & operated DOE national lab
- Dedicated to energy RD&D, domestic energy resources
- Fundamental science through technology demonstration
- Unique industry-academia-government collaborations

Oregon

Pennsylvania

West Virginia

NATIONAL ENERGY TECHNOLOGY LABORATORY

Existing Plants—Emissions and Capture Program Change in Program Focus

2007 R&D Activities

- Water management
- Mercury control
- Coal utilization byproducts

- NO_x control

IEP Funding (Fiscal Year)		
2007	2008	2009
\$15 MM	\$36 MM	\$50 MM

2008 and 2009 R&D Activities

- CO₂ capture & compression
- Water management

Carbon Management Technology Options

Reduce Carbon Intensity

- Renewables
- Nuclear
- Fuel switching
- Coal with biomass

Improve Efficiency

- Demand side
- Supply side

Sequester Carbon

- Capture and store
- Enhance natural sinks

All options needed to:

- Affordably meet energy demand
- Address environmental objectives

U.S. CO₂ Emissions and Existing Coal Plants

Source: EIA, Annual Energy Outlook 2008 Revised Early Release, March 2008

DOE/NETL CCS Program Goals

By 2020, have available for commercial deployment, technologies and best practices for achieving:

90% CO₂ capture

99%+ storage permanence

Pre-combustion Capture (IGCC)

< 10% increase in cost of electricity (COE)*

Post- and Oxy-combustion Capture

< 35% increase in COE*

Includes 50 mile pipeline transport and saline formation storage, 100 years of monitoring

References:

NATIONAL ENERGY TECHNOLOGY LABORATORY

1. Existing Plants—Emissions and Capture Program Goals, U.S. DOE/National Energy Technology Laboratory, Draft Final Report, February 2009

2. Impact of Cost Escalation on Power Systems R&D Goals—Re-baselining APS, CS & FC GPRA R&D Goals, July 2008

RD&D Timeline to Commercial Deployment *CO*₂ *Capture and Sequestration Efforts*

EPRI, Assessment of Post-Combustion Capture Technology Developments, 2007; Gottlicher (2004)

NATIONAL ENERGY TECHNOLOGY LABORATORY

Post- and Oxy-combustion CO₂ Capture Increase in COE

2.

8

NATIONAL ENERGY TECHNOLOGY LABORATORY

CO₂ Emissions Control R&D Activities

- Post-Combustion CO₂
 Control
 - Solvents
 - Sorbents
 - Membranes
- Oxy-Combustion CO₂
 Control
 - Chemical looping
- CO₂ Compression
- Systems Analyses

Carbon Capture Research Pathways Solvents

- High CO₂ loading capacity
 Efficient, compact system
- Minimize regeneration energy
- Fast reaction kinetics
- Non-corrosive
 - Low cost materials of construction
- No solvent degradation
 - Thermally & chemically stable
- Low cost

Carbon Capture Research Pathways Solid Sorbents COLLER

- ➢ High CO₂ loading capacity
- Minimize regeneration energy
- Fast reaction kinetics
- Durable
 - Thermally & chemically stable
 - No attrition
- Advanced sorbent systems
 - Low pressure drop critical
 - Heat management
- Low cost

Carbon Capture Research Pathways Membranes

- ➢ High CO₂/N₂ selectivity
- Durable
 - Chemically (SO₂), thermally
 - Physically
- Membrane systems
 - Process design critical
- Membrane/solvent systems
 - Enhance chemical potential
- Low cost
 - Capital and energy penalty

Carbon Capture Research Pathways Oxy-combustion Technologies

- New oxyfuel boilers
 - Advanced materials and burners
 - Compact designs (FG recycle)
 - Corrosion
- Retrofit existing air boilers
 - Air leakage
 - Heat transfer
 - Corrosion
 - FG recycle
 - Process control/sensors
- Low-cost oxygen
- > CO₂ purification
- > Co-capture (CO₂ + SOx, NOx, O₂)

Carbon Capture Research Pathways Advanced Compression

- Reduce Capital Costs
- Increase efficiency
- \succ Integration with CO₂ capture process
- Heat recovery
- Modeling

For Additional Information

Office of Fossil Energy www.fe.doe.gov

NETL www.netl.doe.gov

15