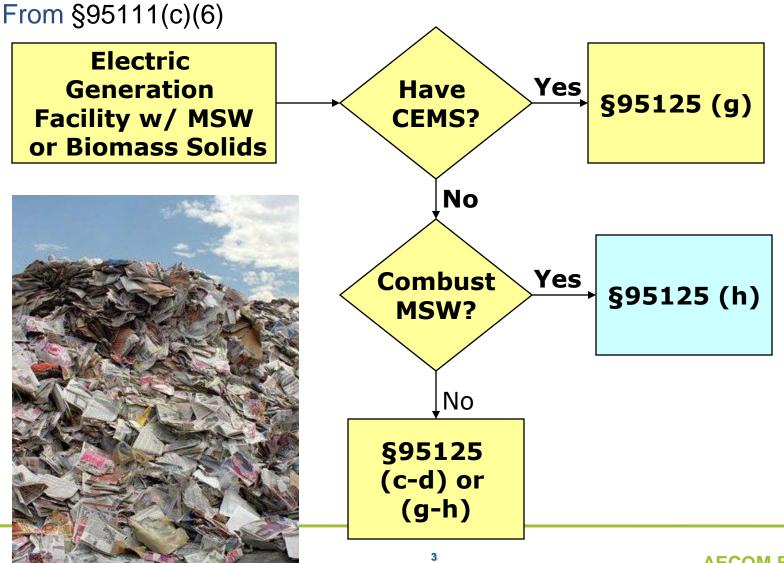


Use of Steam Flow Method for Estimating GHG Emissions from Heterogeneous Solid Fuels

Naomi Goff AECOM Environment

McIlvaine Company Hot Topic Hour April 2, 2009

AB 32 requires:


Operators of electricity generating facilities located in California, with a nameplate generating capacity of greater than or equal to 1 MW, which annually emit more than 2,500 metric tonnes CO_2 to annually report and have GHG emissions verified.

Deadline for reporting: April 1, annually (with the exception of 2009)

Annual verification – Generating Capacity ≥ 10MW (and combusts fossil fuels)

Triennial verification – Generating Capacity ≤ 10 MW <u>or</u> combusts only biofuels

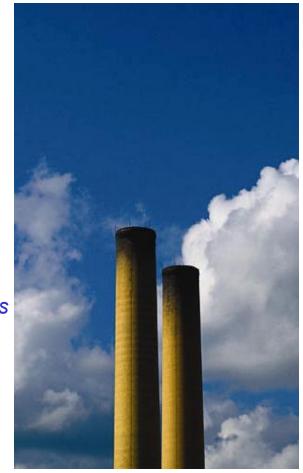
AECOM **AB 32 Mandatory Reporting Methodology Selection**

AECOM Environment

Accepted Approaches to Determine CO₂

1. CEMS Method (§95111(g))

Disadvantages:


- Costly
- Difficult to install and maintain
- Abatement systems can interfere with operation
- No biogenic/anthropogenic differentiation
- 2. Annual Source Testing (§95111(h)(3))

Disadvantages:

- Can be costly, only provides a "snapshot" of operations
- 3. Steam Method (§95111(h)(1))

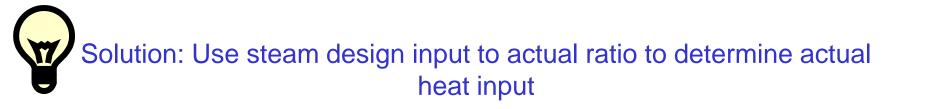
Disadvantages:

• Indirect measurement of CO2

Steam Method to Determine CO₂ from Biomass, MSW, and Refuse-Derived Fuels

CO₂ = Heat Input x CCEF x 3.664 x 0.001

$CO_2 =$	Annual emissions, metric tonnes per year		
Heat	=	Calculated heat input, MMBtu per year	
CCEF	=	Default carbon content emission factor,	
		kg carbon per MMBtu	
3.664	=	CO_2 to carbon molar ratio	
0.001	=	Conversion factor, metric tonnes/kg	


Issue is determining heat input for a fuel of heterogeneous composition Biomass fuels have variable moisture content (normalize in terms of BDT)

Steam Method to Determine CO₂ from Biomass, MSW, and Refuse-Derived Fuels

CO₂ = Heat Input x CCEF x 3.664 x 0.001

$CO_2 =$	Annual emissions, metric tonnes per year		
Heat	=	Calculated heat input, MMBtu per year	
CCEF	=	Default carbon content emission factor,	
		kg carbon per MMBtu	
3.664	=	CO_2 to carbon molar ratio	
0.001	=	Conversion factor, metric tonnes/kg	

Issue is determining heat input for a fuel of heterogeneous composition Biomass fuels have variable moisture content (normalize in terms of BDT)

$$Heat Input_{actual} = Steam_{actual} \times \frac{Heat Input_{design}}{Steam_{design}}$$

Advantages:

- Steam must be monitored for facilities under NSPS for MWC (40CFR60 Subpart Cb or Cc)
- Steam commonly used metric to determine performance
- No CEMS required!

Apply Appropriate F Factor to Determine CO₂ from Heat Input

- F Factors represent volumes of combustion products per unit heat input (scf/MMBtu)
- Specific to type of fuel combusted
- Found in 40 CFR 60 Appendix A-7 (Method 19)
- Multiply by calculated CO₂ percent (derived from O₂), molecular weight of CO₂, and divide by molar volume to obtain CO₂

Determination of Biogenic and Anthropogenic Fractions

- Use ASTM Method D6866-06a
 - Uses Liquid Scintillation Counting (LSC) techniques to measure C¹⁴ to other carbon ratios
 - Quantifies young carbon (biogenic)
 - Anthropogenic fraction = 1 biogenic fraction
- Disadvantage:
 - Snapshot only
- Advantages over performing a Waste Characterization Study:
 - Less time-intensive
 - Accuracy improved over "garbology" studies

Goal: Compute biogenic and anthropogenic CO₂ emissions

Actual data¹

Steam_{actual} = 90.8 klb/hr

Steam_{design} = 100.5 klb/hr

Heat Input_{design} = 173.3 MMBtu/hr

Heat input_{actual} = Heat input_{design} x (Steam_{actual}/Steam_{design}) = 173.3 MMBtu/hr x (90.8 klb/hr / 100.5 klb/hr)

<u>Heat input_{actual} = 156.6 MMBtu/hr</u>

Note 1: Data from hour 0, January 1, 2007

AECOM

$CO_2 = MW CO_2 / V_m x F_c x H_a$

Reference Data	_
MW CO2	= 44.01 lb/lb-mol
Vm	= 385.3 scf/mol (at 20°C)
Fc	= 1820 scf/MMBtu (40 CFR 60 Appen. A-7)
Heat Input actual	= 156.6 MMBtu/hr

= 44.01 lb/lb-mol / 385.3 scf/mol x 1820 scf/MMBtu x 156.6 MMBtu/hr

 $CO_2 = 32,555 \text{ lb/hr} = 14.77 \text{ tonnes/hr}$

Biogenic Fraction (ASTM D6866-06a) = 65.7%

Biogenic $CO_2 = 0.657 \times 14.77$ tonnes/hr = 9.70 tonnes/hr

Anthropogenic $CO_2 = (1 - Biogenic \%) \times CO_2 = (1 - 0.657) \times 14.77$ tonnes/hr = 5.07 tonnes/hr =

References

AECOM

Balentine, H.; Goff, N.; and Hahn, J.; "Use of Steam Flow Method for Estimating GHG Emissions from Heterogeneous Solid Fuels.", Air and Waste Management Association Greenhouse Gas Measurement Symposium, March 22 – 25, 2009, San Francisco, California.

For additional information, or if you have any questions:

Naomi Goff AECOM Environment 2101 Webster St. Suite 1900 Oakland, California 510-879-4503 Naomi.Goff@aecom.com