

2010 IEEE-IAS/PCA Environmental Workshop March 30, 2010

NESHAP Challenges and Solutions

Robert McIlvaine McIlvaine Company

Recordings on free site

- MACT Webinar February 12
- > MACT Webinar March 12
- MACT Webinar March 19
- By-products and Fuels

Environment

□ Solutions for HCl, Mercury, THCs, Metal HAPs

□ Future Posting to Free McIlvaine UPIS Cement Website

McIlvaine Cement MACT February 12, 2010

MACT could require \$4.7 billion investment and add \$20/ton to the cost of cement.

Cement Manufacturing 水泥生产	Air Quality 空气质量	Webinar (02-12-10)	MACT	Regulations 规章	PCA	O'Hara, Andy		Biography	Presentation	Webinar Recording	
---------------------------------	---------------------	-----------------------	------	-------------------	-----	-----------------	--	-----------	--------------	----------------------	--

Process modifications and the use of a circulating fluid bed absorber could be a lower cost alternative.

Cement Manufacturing 水泥生产	Air Quality 空气质量	Webinar (02-12-10)	MACT	HCI	CDS	Gossman Consulting	Gossman, David	Biography	Abstract	Presentation	Webinar Recording
---------------------------------	------------------------	-----------------------	------	-----	-----	-----------------------	-------------------	-----------	----------	--------------	----------------------

Injection of sodium sorbents ahead of existing particulate control will reduce HCl, SO² and SO³.

Cement Manufacturing 水泥生产	Air Quality 空气质量	Webinar (02-12-10)	МАСТ	HCI	Trona	Solvay	Kong, Yougen	Biography	Abstract	Presentation	Webinar Recording	
---------------------------------	------------------------	-----------------------	------	-----	-------	--------	-----------------	-----------	----------	--------------	----------------------	--

McIlvaine Cement MACT February 12, 2010

There are many variables in the raw materials and operations which result in a wide range of mercury emissions. There are other challenges to using activated carbon.

Cement Manufacturing 水泥生产	Air Quality 空气质量	Webinar (02-12-10)	MACT	Mercury 水银(汞)	Activated Carbon	EERC	Laudal, Dennis	Biography	Abstract	Presentation	Webinar Recording	
---------------------------------	------------------------	-----------------------	------	-------------------------	---------------------	------	-------------------	-----------	----------	--------------	----------------------	--

Mercury can be thermally removed from the kiln dust.

Cement Manufacturing 水泥生产.8	Air Quality 空气质量	Webinar (02-12-10)	MACT	Mercury 水银(汞)	Thermal Desorption	Environmental Quality Management (EQM)	Hawks, Ron	Biography	Abstract	Presentation	Webinar Recording	
-----------------------------------	------------------------	-----------------------	------	-------------------------	-----------------------	---	---------------	-----------	----------	--------------	----------------------	--

McIlvaine Cement MACT March 12, 2010

Inject this sorbent into the existing collector at the time of highest mercury emissions. CKD would be directed to the cement finishing process. The cement friendly sorbent would not affect the concrete quality.

Cement Manufacturing 水泥生产	Air Quality 空气质量	Webinar (03-12-10)	МАСТ	Mercury 水银(汞)	Activated Carbon	Albermarle	Landreth, Ron	Biography	Abstract	Presentation	Webinar Recording
---------------------------------	------------------------	-----------------------	------	---------------------------------	---------------------	------------	------------------	-----------	----------	--------------	----------------------

Mercury analysis in coal fired power generation is not nearly as complex as in cement plants. Early tests show mixed results on mercury capture in scrubbers.

Cement Manufacturing 水泥生产	Air Quality 空气质量 (03-12-10)	MACT	Mercury 水银(汞)	Reaction Engineering	Senior, Constance	Biography	Abstract	Presentation	Webinar Recording
---------------------------------	-----------------------------------	------	---------------------------------	-------------------------	----------------------	-----------	----------	--------------	----------------------

McIlvaine Cement MACT March 12, 2010

One way to reduce CO² emissions is to replace limestone with slag or other calcium sources which are not carbonate compounds.

Cement Manufacturing 水泥生产	Air Quality 空气质量	Webinar (03-12-10)	CO2 二氧化碳	Penta Engineering	Young, Gerald	Biography	Abstract	Presentation	Webinar Recording
---------------------------------	------------------------	-----------------------	--------------------	----------------------	------------------	-----------	----------	--------------	----------------------

MACT Mass particulate monitors using the beta gauge principle allow accurate measurement of particulate in wet stacks.

Cement Manufacturing 水泥生产	Air Quality 空气质量 (03-12-10)	MACT	CEMS	Altech	Morrell, Seth	Abstract	Presentation	Webinar Recording
---------------------------------	-----------------------------------	------	------	--------	------------------	----------	--------------	----------------------

McIlvaine Cement MACT March 19, 2010

Cement companies will need an accurate and cost effective method for determining emissions to meet trading and regulatory requirements. Rockwell has software solutions which can be coordinated with process optimization for maximum value.

Cement Manufacturing 水泥生产	Air Quality 空气质量	Webinar (3-19-10)	CO2 二氧化碳	Optimization Software	Rockwell Software	Hovan, Rich	Biography	Presentation	Webinar Recording
---------------------------------	---------------------	----------------------	--------------------	--------------------------	----------------------	----------------	-----------	--------------	----------------------

The best chance for the industry is likely to be in post regulation law suits rather than revision in the rule. The fundamental approach used by EPA to use HAP regulations to achieve reductions in PM and SO² is flawed.

Cement Manufacturing 水泥生产	Air Quality 空气质量	Webinar (03-19-10)	MACT	Regulations 规章	Brace and Giuliani	Alonso, Rich	Biography	Presentation	Webinar Recording
---------------------------------	------------------------	-----------------------	------	-------------------	-----------------------	-----------------	-----------	--------------	----------------------

With the use of PM as a surrogate for toxic metals, there is the need for precise measurement at very low emission rates and throughout the full campaign. The beta gauge has been proven to be accurate, cost effective and reliable in measurement through all aspects of operation.

Cement Manufacturing 水泥生产	Air Quality 空气质量	Webinar (03-19-10)	MACT	PM CEMS	MSI	Clapsaddle, Craig	Abstract	Presentation	Webinar Recording
---------------------------------	------------------------	-----------------------	------	---------	-----	----------------------	----------	--------------	----------------------

McIlvaine Cement MACT March 19, 2010

AE&E has both SCR and scrubber installations on European cement plants. Mercury can be captured with addition of bromine. There are alternatives to thermal oxidization for THC removal.

Cement Manufacturing 水泥生产	Air Quality 空气质量	Webinar (03-19-10)	MACT	APC	AE&E VonRoll	Hug, Donald	Abstract	Presentation	Webinar Recording
---------------------------------	------------------------	-----------------------	------	-----	-----------------	----------------	----------	--------------	----------------------

Activated carbon can remove the organics as well as the mercury. A secondary baghouse is needed .

Cement Manufacturing 水泥生产	Air Quality 空气质量	Webinar (03-19-10)	МАСТ	Mercury 水银(汞)	Activated Carbon	ADA-ES	Sjostrom, Sharon	Biography	Abstract	Presentation	Webinar Recording
---------------------------------	---------------------	-----------------------	------	-------------------------	---------------------	--------	---------------------	-----------	----------	--------------	----------------------

A strong case is made for using a multi-metal CEMS for both mercury and other toxic metals rather than dedicated mercury CEMS and PM CEMS. Cost is competitive. PM is not a reliable surrogate. Toxicity of individual metals varies by several orders of magnitude.

Cement Manufacturing 水泥生产	Air Quality 空气质量	Webinar (03-19-10)	MACT	CEMS	Multi Metal	Cooper Environmental	Cooper, John	Presentation	Webinar Recording
---------------------------------	------------------------	-----------------------	------	------	-------------	-------------------------	-----------------	--------------	----------------------

By-Products and Fuels

- Can gypsum from limestone scrubber be used in cement product
- Burn more PVC and make 30% hydrochloric acid
- Why not burn hazardous waste if you are going to make a big APC investment
- Co-locate ethanol plants and use the waste biomass to fuel the kiln
- Make steam from the thermal oxidizer exhaust
- Use oxyfiring and capture CO2
- Vary fuels to maximize ability to meet MACT

Environment

- > Avoid converting an air to water problem
- Avoid converting an air to soil problem
- Consider ambient PM and ozone future limits
- NOx control can be synergistic
- HCI and mercury could be tough to meet and even measure

HCI Capture

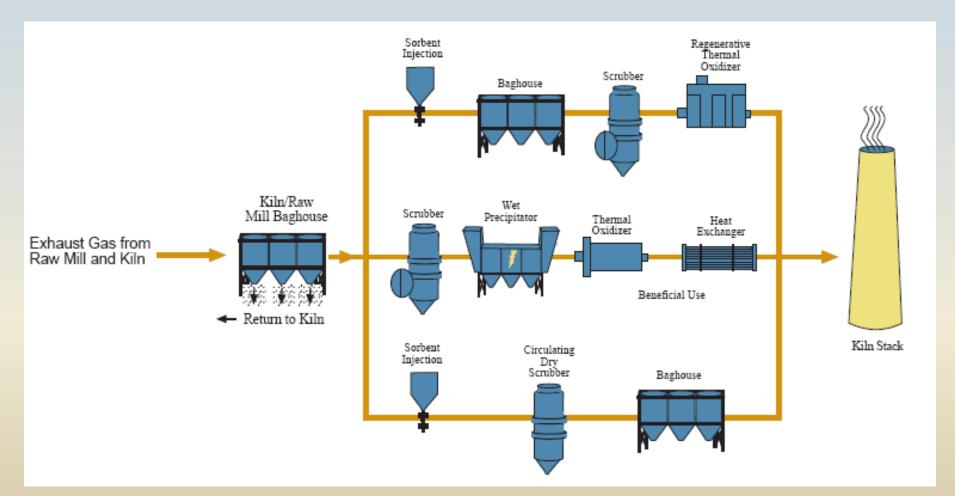
Technology	Classification
Wet limestone scrubber	Highest efficiency but biggest investment
Circulating dry scrubber and add on filter	Not quite as efficient, but there is no water pollution and you can capture metals
Dry injection with sodium or lime with existing device	Least expensive but also least efficient
Two stage with acid capture	Expensive, but acid by product and mercury eliminated so no worry about mercury in gypsum

Mercury Capture

Technology	Classification				
Activated carbon injection with add on	Efficient but expensive and requires handling to				
dust collector	avoid combustion				
	Efficient to the extent mercury is oxidized. Need				
Scrubber additives	to prevent re-emission. Also need wastewater				
	treatment				
Dracass deservition	Inexpensive but efficiency questions. Could be				
Process desorption	applicable where mercury in feed is low				
	Most efficient and will remove THCs but				
Carbon bed	expensive and poses maintenance/combustion				
	problems				
CCD plus corubbor	Oxidize in SCR and then capture in scrubber. But				
SCR plus scrubber	logical only if you need high NOx removal as well				
Circulating dry corubbar	Could utilize ACI as well as lime to capture Hg and				
Circulating dry scrubber	HCl but at what efficiency				

THCs and Organic HAPs

Technology	Classification				
Regenerative thermal oxidizer	Expensive but efficient and does recover heat				
Catalytic or straight thermal	Less expensive but does not recover heat				
	SCR plus organics in one vessel similar to				
Two stage catalytic	European waste incinerators. Solution only if NOx				
	reduction also needed				
Activated carbon injection	Could be low cost solution to capture THC along				
Activated carbon injection	with mercury with just one ACI injection point				
Carban had	Very efficient but expensive. However it would				
Carbon bed	remove other contaminants as well				



Metal HAPS

Technology	Classification			
Membrane bags for existing collector	Will improve efficiency but metals will keep vaporizing from CKD			
Secondary baghouse	Efficient and can capture mercury and THC			
High energy scrubber	May not be efficient enough at reasonable energy expenditure but would capture HCl and SO2 as well			
Wet precipitator	Very efficient but costly. Could be installed in top of limestone scrubber. Will also capture condensibles			

Cement Manufacturing Process Gas Treatment (Options)

