Status of CO₂ Capture Technology for Existing Coal-Fired Generation

James E. Staudt, Ph.D For questions: staudt@AndoverTechnology.com

McIlvaine Hot Topic Hour February 25, 2010

© Andover Technology Partners – all rights reserved

www.AndoverTechnology.com

What ATP Does

What we do

- Consulting
 - Focused on Air
 Pollution
 Control/Monitoring
- Software and licensed reports

Proud member of

Clients

- Government
- Facility Owners
- Equipment suppliers
- Investment
 Community

www.icac.com/ghg

www.AndoverTechnology.com © Andover Technology Partners

JSTITUTE OF CLEAN AIR COMPANIES

Current GHG Activities/Analysis

- Private Sector independent analysis/benchmarking of carbon capture technologies, other GHG mitigation strategies, and associated companies
- US EPA's GHG technology database
 - Not to be confused with the GHG Inventory!
- US EPA's Industrial Sector model
 - GHG mitigation measures as well as criteria pollutant

www.AndoverTechnology.com © Andover Technology Partners

"Ballpark" CO2 Emissions by Source Type

Technology	CO2, tons/MWhr
Coal (Subcritical)	~1 .0
Coal (Supercritical)	~0.89
Coal (UltraSupercritical)	~0.78
NGCC	~0.40-0.50

2008 US Electricity Generation

Electricity Generation by Source MWhr

- Coal[1]
- Petroleum Liquids[2]
- Petroleum Coke
- Natural Gas
- Other Gases[3]
- Nuclear
- Hydroelectric Conventional
- Other Renewables[4]
- Hydroelectric Pumped Storage
- Other[5]

www.AndoverTechnology.com © Andover Technology Partners

Coal's Future

- Too much of the "pie" to be quickly or easily replaced as a source of power generation
- To reduce CO₂ emissions significantly in next few decades, measures are necessary for existing units
 - Carbon Capture technologies are needed
- President Obama establishes Interagency Task Force on Carbon Capture and Storage

Technologies for CO2 Capture

		5-10 yrs	10-15 years	15+ years	
		"Near" term	"Medium" term	"Long" term	
Existing Facilities	Post Combustion	Amine Scrubbin	Advanced or Second Generation Amine or NH3, Antisublimation	membranes, solid sorbents, metal- organic frameworks, algae	
		Ammonia Scrubbi	ng	digue	
	Oxy-Firing	Oxyfiring with cryogenic ASU	Advanced Separation	Advanced Separation, Chem Looping, CAR	
New Facilities	Pre Combustion	IGCC/Selex Post combustion and Oxyfiring are the possible approaches for			
existing facilities					

History of Amines

- Has been used for many decades for gas cleaning
- First use on combustion gases by Dow during energy crisis of 70's/80's for EOR, technology later sold to Fluor and named Econamine FG
- MHI, with Kansai Electric, develops KS-1 in 1990's
- Both technologies in commercial use
 But on smaller scale than envisioned for CCS
- Extensive R&D on improved amines and amine processes by numerous organizations

Amines Versus Ammonia

Amines

- Absorption/stripping
- More experience
- Special reagents
- Corrosiveness of MEA
- Sensitive to O₂, SO₂ and NO₂
- 25-30% output impact
 - likely to improve
- Several suppliers

Ammonia

- Absorption/stripping
- Limited experience
- Widely avail reagent
- Non corrosive aq. ammonia
- No impact of O₂, SO₂ and NO₂
- 15%-22% output impact target
 - Higher pressure output
- Two suppliers

Retrofit Issues for Current Amine/NH3 Designs

- Proximity to CO₂ pipeline or injection well
- Space more space than LSFO is needed
- Significant loss of generation capacity and impact to steam system
 - High steam requirements
 - Parasitic electric load
- Quality of flue gas
 - Impact of SO₂ and NO₂ on Amines
 - May need polishing scrubber and NOx control

Issues for Oxy Combustion

- High power demand of Air Separation Unit
 - Cryo ASU has parasitic power of 36% versus about
 8% for normal EGU
 - Methods underway for reducing
- Purification of flue gas
 - Inerts and moisture
 - SOx, NOx, O2 removal
- Proximity to CO₂ pipeline or injection well

Advanced Separation Unit with Oxy Firing

Chemical Looping Combustion

© Andover Technology Partners – all rights reserved

Ceramic Autothermal Recovery

Source: NETL

Reducing Compression Cost

- Higher pressure evolution of CO2
 - Ammonia or Advanced Amines
- Ramgen Supersonic Shock-Wave Compressor
 - 1/10th the size of conventional compressor
 - Lower capital cost
 - 2-stage compressor
 - More sensible heat to recover

Lessons from SO2 Scrubber Evolution

- Reliability Evolution
 - Improved materials, better chemistry control
 - Far more reliable less need for redundancy or for bypass
- Performance Evolution
 - Much higher removal efficiencies and lower parasitic loads due to technology improvements
- Cost Evolution
 - Larger scale and less redundancy, reducing capital costs
 - Ongoing costs lowered
 - Less waste high quality dewatered gypsum product
 - Lower energy consumption

Evolution of Use of Bypass

Evolution of Scrubber Efficiency

Evolution of Scrubber Size

Scrubber technology evolution

- Reliability Evolution
 - Improved materials, better chemistry control
 - Far more reliable less need for redundancy or for bypass
- Performance Evolution
 - Much higher removal efficiencies and lower parasitic loads due to technology improvements
- Cost Evolution
 - Larger scale and less redundancy, reducing capital costs
 - Ongoing costs lowered
 - Less waste high quality dewatered gypsum product
 - Lower energy consumption

Key Takeaways

- For existing units technologies will be available for CO₂ capture
- Application will likely be more limited by sequestration than carbon capture
- Early deployments of technology will incorporate risk mitigation measures
- Early deployments of technology will not achieve the full performance potential of the technology
- Long-term, scale and technology improvements will be used to drive down cost and increase performance
- Trading programs mitigate risk and incentivize efforts to maximize performance and use of economic scale.
- Sometimes a much cheaper option comes along that is "good enough" for the moment