Pratt & Whitney Rocketdyne (PWR) Compact Gasification System

Jim Hartung Director, Energy Systems

Alan Darby Program Manager, Gasification

Pratt & Whitney Rocketdyne A United Technologies Company

GTC Annual Conference October 2006

Leveraging 50 Years of Rocket Engine Technology to Reduce Cost and Increase Plant Availability

Gasification Market is Poised for Rapid Growth

Market Drivers

- Increasing price of oil & natural gas
- Low cost, abundant coal & petroleum coke
- Environmental regulations
- Gasification business maturation & technology advances

Growth Barriers

- High capital cost
- Low plant availability

PWR's objective is to address these barriers with the compact gasification system

Pratt & Wh

Rocket Engine Technologies Enable Compact Gasifier

Rocket Engine Technologies

- Rapid Mix Injector
- Cooled Membrane Wall
- Rapid Spray Quench

- 5000° F flame temperature gasifies most feedstock within 3 ft of injector
- Rocket engine cooling technology keeps metal temperatures below 800° F
- Plug flow provides uniform residence time for high carbon conversion
- High pressure and water quench enables low cost H₂ production and CO₂ sequestration
- Dry feed minimizes oxygen consumption and gasifies all ranks of coal

Rocket engine price < \$10 per kW thermal (much less than current gasification systems)

Pratt & Whitney Rocketdyne

Pratt & Wh

Compact Gasifier Reduces Cost and Improves Plant Availability

Current Market Leaders

PWR Compact Gasifier

- 90% size reduction
- 50% lower cost (gasification system)
 - Factory fabrication
- 99% availability (gasification system)
 - Long life components
 - Rapid repair
 - Short scheduled outages
- 80% to 85% cold gas efficiency
 - Dry feed system
 - 99% carbon conversion
 - Low oxygen consumption
- Low cost gasification of all ranks of coal & petcoke

Pratt & Whitney Rocketdyne

Pratt & Whitney

Proof of Concept Tests Completed in 1975-1985

Dense Phase Dry Feed System

Compact Gasifier in Horizontal Position

Rapid Spray Quench

Pratt & Whitney

Flow Splitter

Rapid Mix Injector

- Gasified coal, petcoke, and biomass (20-40 TPD)
- Performed only short duration tests (< 1 hr)

Gasifier Development Status

Completed

CMC Tests

at CANMET

Completed CMC Material Tests at Albany

- DOE Albany tests showed excellent slag adhesion with no reactions
- Additional tests planned for ORNL

CMC liner test successful with 26 starts and high temperature excursions

Defined Pilot Plant at GTI (18 TPD)

- Pilot Plant to be located at GTI Flex Fuel Test Facility
- Will demonstrate single injector in full-length gasifier

Designing Commercial Gasifier (400 TPD)

Pratt & Whitney

- Design is scalable to 3000 TPD by replicating injectors
- Fixed length
- Inside diameter:
 - ~ 1 ft for 400 TPD
 - ~ 3 ft for 3000 TPD

Dry Solids Pump and Feed System Development Status

Constructing Cold Flow Test Facility at EERC (400 TPD)

- Flow splitter tests to begin in early 2007 in batch mode
- Dry solids pump to be added later for continuous operation

Fabricating Feed System & Flow Splitters (400 TPD)

Designing Dry Solids Pump (400 TPD)

Pratt & Whitn

- Flow splitters are commercial size
- Will demonstrate full flow operation and turndown to 33% flow
- Design is scalable to 3000 TPD
- Throat area:
 - \sim 8 in² for 400 TPD
 - ~ 60 in² for 3000 TPD

Compact Gasification System Mature Availability Estimate

<u>Component</u>	<u>MTBF</u>	<u>MTTR</u>	FOR
	(yr)	(nr)	(%)
 Gasifier 			
 Injector 	2	12	0.07
 Cooled Wall 	10	48	0.05
•Quench	10	60	0.07
 Pump & Feed System 	0.4	10	0.29
 Solids Separation System 	0.7	18	<u>0.29</u> 0.77%

- <u>MTBF</u> = Mean Time Between Failure
- <u>MTTR</u> = Mean Time to Repair (Downtime)

Pratt & Wh

• <u>FOR</u> = Force Outage Rate

Mature availability ~ 99% (negligible scheduled outages)
Redundancy typically not needed, but can be provided at low cost for high reliability applications

Business Model

PWR Licenses Technology & Provides Key Components

Compact Gasifier Dry Solids Pump

Licensees Design & Construct Plants

nts

End Customers Own & Operate Plants

Pratt & Wh

• License Technology to:

Gasification System Providers

• EPC Contractors

End Customers

• Provide Licensees with:

Key Components

Integration Support

Aftermarket Services

Objective is to Complement Existing Industry Capabilities & Technologies

Pratt & Whitney Rocketdyne

Commercialization Approach

- Team with licensees & launch customers
- Collaborate on technology development & integration
 - Compact Gasifier
 - Dry Solids Pump
- Demonstrate technology in existing plants (2007 design start)
 - Parallel trains & upgrades
 - Gasification plants
 - Steam methane reformers
- Develop standardized designs to simplify manufacturing & operations support

Pratt & W

Acknowledgement

- Development of the Compact Gasification System is supported by the U.S. Department of Energy under Award No. DE-FC26-04NT42237
- However, any opinions, findings, and conclusions expressed herein are those of the authors and do not necessarily reflect the views of the DOE

Questions?

Pratt & Wh