

NATIONAL ENERGY TECHNOLOGY LABORATORY

Improving Efficiency of Coal-fired Power Plants for Near Term Greenhouse Gas Emissions Reductions

Chris Nichols

Office of Systems, Analyses and Planning

National Energy Technology Laboratory

Overview

- NETL has evaluated the opportunity to improve the efficiency of coal-fired power plants as a way to reduce GHG emissions
- Increasing coal-fired power plant efficiency makes sense
 - US has enormous coal reserves
 - It is expensive and takes a long time to build new power plants
 - Side benefits of improved air quality and reduced water usage
 - Momentum toward carbon capture and storage

Analysis results

- Average efficiency of coal generating units can be improved from 2-5 percentage points, from the current average efficiency of 32.4% to 34.4% - 37.2%
- Under a constant generation scenario from coal, GHG emissions reduced by 100-240 MMmtCO₂/yr (1.5%-3.3% of total U.S. emissions)

Top-performing Coal-fired Power Plants, 5pp more efficient than average

				2008 Total	
	Number of	Capacity	Capacity	Generation	2008 Capacity -Weighted
Decile	Units	(GW)	Factor	(BkWh)	Efficiency (HHV)
1	194	30.5	62%	165	27.5%
2	102	30.3	67%	179	29.9%
3	88	30.7	65%	176	30.8%
4	86	30.6	69%	185	31.6%
5	75	30.7	70%	189	32.2%
6	83	30.8	66%	178	32.9%
7	71	31.0	68%	186	33.8%
8	79	30.6	68%	183	34.7%
9	61	30.8	67%	181	35.7%
10	53	30.7	74%	201	37.6%
Overall	892	307	69%	1823	32.4%

Data Source: Ventyx's Energy Velocity 2008 average net heat rate data for coal-fired units using 97% or more coal. Heat rates were weighted by capacity and units with missing or anomalous data were omitted. Omitted units accounted for 3% of generation

Efficiency Increased 1.7pp Since 1998

NATIONAL ENERGY TECHNOLOGY LABORATORY

Data Source: Ventyx's Energy Velocity 1998-2008 average net heat rate data for coal-fired units using 97% or more coal. Heat rates were weighted by capacity and units with missing or anomalous data were omitted. Omitted units accounted for 3% of generation

4

10% of the Coal Fired Power Plant Fleet Improved Efficiency by more than 4pp

NATIONAL ENERGY TECHNOLOGY LABORATORY

Data Source: Ventyx's Energy Velocity 1998-2008 average net heat rate data for coal-fired units using 97% or more coal. Heat rates were weighted by capacity and units with missing or anomalous data were omitted. Omitted units accounted for 3% of generation

Big Improvements, 6-10pp tend to be larger, newer plants. Other improvements, 1-6pp were achieved by all types.

РР				Ave.				РР	
Improvement	Capacity	1998	2008	Capacity	Average	% Bit.	% w/ SO2	Change in	
(2008 - 1998)	(GW)	Efficiency	Efficiency	(GW)	Age	Coal	Controls	LF	% NSR
6 to 10	9	28.5%	35.7%	554	36	64%	50%	1.3	19%
4 to 6	21	28.3%	33.5%	351	43	58%	33%	2.3	36%
3 to 4	33	29.3%	32.6%	394	42	54%	42%	2.8	34%
2 to 3	46	29.3%	32.0%	367	43	55%	33%	2.8	31%
1 to 2	61	30.6%	32.3%	380	42	56%	30%	2.8	17%
0 to 1	54	30.8%	31.5%	358	42	59%	36%	1.0	19%
-1 to 0	37	31.3%	30.6%	305	43	65%	31%	-0.3	21%
-2 to -1	18	30.8%	29.5%	325	41	51%	44%	1.7	18%
-3 to -2	8	31.0%	29.3%	294	41	52%	44%	2.0	29%
-4 to -3	4	32.6%	28.8%	219	43	29%	17%	1.8	36%
-4 to -6	2	34.0%	28.1%	198	44	57%	13%	1.5	20%
-6 to -10	1	33.3%	24.2%	209	51	93%	16%	11.5	9%
Whole Fleet	293	31.0%*	32.4%*	353	42	57%	34%	1.7	24%

NATIONAL ENERGY TECHNOLOGY LABORATORY

*Whole Fleet Efficiency is capacity weighted, rest of chart is unweighted average unit efficiency.

6

Source: Ventyx Energy Velocity Suite. Includes plants over 25MW that burn 97% or more of coal. Plants with missing or anomalous data omitted.

Analysis Methodology 1: Best Year Efficiency

Decile	2008 Efficiency	Max Efficiency		
1	27.5%	29.8%		
2	29.9%	31.7%		
3	30.8%	32.5%		
4	31.6%	33.3%		
5	32.2%	34.1%		
6	32.9%	35.0%		
7	33.8%	35.8%		
8	34.7%	36.8%		
9	35.7%	37.7%		
10	37.6%	39.7%		
Average	32.4%	34.4%		

- Assuming each unit can meet the highest efficiency it achieved during the 1998-2008 time period yields overall fleet efficiency that is 2pp higher than 2008.
- Increase may be due to better operation or maintenance cycle.

NATIONAL ENERGY TECHNOLOGY LABORATORY

Data Source: Ventyx's Energy Velocity 1998-2008 average net heat rate data for coal-fired units using 97% or more coal. Heat rates were weighted by capacity and units with missing or anomalous data were omitted. Omitted units accounted for 3% of generation

Analysis Methodology 2: Benchmark Regression to Predict Fleet Efficiency

Adopted benchmark regression method developed by Goudarzi and Roberts in 1998

- 1. Perform an initial regression with power plant efficiency as the dependent variable (R² of 0.49)
- 2. Identify and rank "overachievers" through a benchmarking process, i.e. the generating units that beat the regression predicted efficiency.
- Perform a 2nd regression on the top 10% identified though benchmarking process, the "best overachievers", with plant efficiency as the dependent variable (R² of 0.74)
- 4. Predict efficiency for fleet using factors from the 2nd regression.
 - Represents what each generating unit could accomplish if it adopted practices of the overachievers.

Benchmark Regression Example

Benchmark Regression Example

Analysis Methodology 3: Segmentation and Best in Class

Plant Type	Fuel Type	Size (MW)	Capacity (GW)	# Units	Average Efficiency	90 th Percentile
		0-200	32.3	264	31.0%	34.5%
Sub Critical	Bituminous	200-500	36.6	113	32.8%	35.8%
		500+	29.6	48	32.7%	35.0%
		0-200	12.3	111	29.2%	32.0%
	Subbituminous	200-500	31.7	99	31.4%	35.6%
		500+	65.0	99	31.6%	34.1%
	Other Coal	NA	14.2	43	31.4%	34.8%
	Bituminous	NA	61.4	80	34.8%	37.3%
Super Critical	Subbituminous	NA	15.5	22	35.2%	38.0%
	Other Coal	NA	8.1	13	32.0%	34.8%

Setting each class to the average efficiency of the 90th percentile produces a nameplate capacity weighted fleet efficiency of 35.8% which is 1.4pp lower than the regression analysis.

Efficiency Improvement Analysis Results by Decile

Summary

- A 2-5 pp efficiency improvement target for the fleet is supported by:
 - 30GW of the fleet improving efficiency 4pp or more since 1998,
 - Best year efficiency analysis: 2.0pp improvement
 - Regression Analysis: 4.8pp improvement
 - 90th Percentile Analysis: 3.4pp improvement
- Improving efficiency from 32.4% to 34.4% 37.2% reduces GHG emissions:
 - -4.5% 10.2% in the power sector
 - $-100 240 \text{ MMmtCO}_2/\text{yr}$ (1.5% 3.3%) for the entire U.S.

Future Work

- Collect cost data on plant refurbishment projects
- Collect data to enable us to estimate the design heat rate for each plant
- Case studies using ASPEN to model individual technology efficiency impacts

Acknowledgements and for more information....

Phil DiPietro Kristin Gerdes Gavin Pickenpaugh Katrina Krulla

For more information contact: Chris Nichols Email: <u>Christopher.nichols@netl.doe.gov</u> Phone: 304 285-4172

NETL Energy Analyses:

www.netl.doe.gov/energy-analyses

Search for "efficiency" to find reports on this topic