Comparison of Pratt and Whitney Rocketdyne IGCC and Commercial IGCC Performance

DOE/NETL-401/062006

Final Report

June 2006

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed therein do not necessarily state or reflect those of the United States Government or any agency thereof.

Comparison of Pratt and Whitney Rocketdyne IGCC and Commercial IGCC Performance

DOE/NETL-401/062006

Final Report

June 2006

NETL Contact:

Jeffrey Hoffmann Office of Systems Analysis and Planning

Jenny Tennant Gasification & Combustion Projects Division

Gary J. Stiegel Gasification Technology Manager Office of Coal and Power Research and Development

Prepared by:

Research and Development Solutions, LLC (RDS)

Michael Matuszewski, Parsons Corporation Michael D. Rutkowski, Parsons Corporation Ronald L. Schoff, Parsons Corporation

National Energy Technology Laboratory www.netl.doe.gov This page intentionally left blank

TABLE OF CONTENTS

List of	[°] Exhibits	ii
List of	Acronyms and Abbreviations	iv
Execut	tive Summary	1
1	Design Basis	5
1.1	Site Characteristics	5
1.2	Environmental Constraints	6
2	Case 1 - PWR Gasifier Based IGCC Plant Description and Results	9
2.1	Process Description	9
2.2	Modeling Assumptions for PWR Gasifier	10
2.3	Equipment Descriptions	16
2.4	Performance Results	19
2.5	Economic Results	20
3	Case 2 - GE Energy Gasifier Based IGCC Plant Description and Results	25
3.1	Process Description	25
3.2	Equipment Descriptions	29
3.3	Performance Results	30
3.4	Economic Results	31
4	Case 3 - PWR Gasifier Based IGCC Plant Description and Results	37
4.1	Process Description	37
4.2	Modeling Assumptions for PWR Gasifier	38
4.3	Equipment Descriptions	42
4.4	Performance Results	45
4.5	Economic Results	46
5	Case 4 - Shell Gasifier Based IGCC Plant Description and Results	51
5.1	Process Description	51
5.2	Equipment Descriptions	56
5.3	Performance Results	58
5.4	Economic Results	59
6	Case 5 - PWR Gasifier Based H ₂ Production Plant Description and Results	65
6.1	Process Description	65
6.2	Modeling Assumptions for PWR Gasifier	65
6.3	Equipment Descriptions	69
6.4	Performance Results	72
6.5	Economic Results	73
7	Case 6 - GE Energy Gasifier Based H ₂ Production Plant Description and	
	Results	79
7.1	Process Description	79
7.2	Equipment Descriptions	83
7.3	Performance Results	86
7.4	Economic Results	87
8	Summary	93
9	References	96

LIST OF EXHIBITS

Exhibit 1 Plant Configuration Summary	. 1
Exhibit 2 Performance Summary and Economic Analysis Results	. 2
Exhibit 3 Plant Configuration Summary	. 5
Exhibit 4 Site Ambient Conditions	. 5
Exhibit 5 Site Characteristics	. 6
Exhibit 6 Design Coal Characteristics	. 6
Exhibit 7 NSPS Emission Requirements Summary	. 7
Exhibit 8 Best Available Control Technology Determinations by Technology	. 8
Exhibit 9 Case 1 - PWR IGCC Plant Block Flow Diagram	13
Exhibit 10 Case 1 - PWR IGCC Plant Stream Table	14
Exhibit 11 Case 1 - PWR IGCC Plant Performance Summary	20
Exhibit 12 Case 1 - PWR IGCC Total Plant Capital Costs	21
Exhibit 13 Case 1 - PWR IGCC Capital Investment & Operating Cost Requirement Summary	
(94% Capacity factor)	22
Exhibit 14 Case 1 - PWR IGCC Capital Investment & Operating Cost Requirement Summary	
(90% Capacity factor)	23
Exhibit 15 Case 1 - PWR IGCC Capital Investment & Operating Cost Requirement Summary	
(85% Capacity factor)	24
Exhibit 16 Case 2 - GE Energy IGCC Plant Block Flow Diagram	26
Exhibit 17 Case 2 - GE Energy IGCC Plant Stream Table	27
Exhibit 18 Case 2 - GE Energy IGCC Plant Performance Summary	31
Exhibit 19 Case 2 - GE Energy IGCC Total Plant Capital Costs with a Dual Gasifier Train	32
Exhibit 20 Case 2 - GE Energy IGCC Total Plant Capital Costs with a Redundant Gasifier Trai	n
	33
Exhibit 21 Case 2 - GE Energy IGCC Capital Investment & Operating Cost Requirement	
Summary (94% Capacity factor)	34
Exhibit 22 Case 2 - GE Energy IGCC Capital Investment & Operating Cost Requirement	
Summary (90% Capacity factor)	35
Exhibit 23 Case 2 - GE Energy IGCC Capital Investment & Operating Cost Requirement	
Summary (85% Capacity factor)	36
Exhibit 24 Case 3 - PWR Convective IGCC Plant Block Flow Diagram	39
Exhibit 25 Case 3 - PWR Convective IGCC Plant Stream Table	40
Exhibit 26 Case 3 - PWR Convective IGCC Plant Performance Summary	46
Exhibit 27 Case 3 - PWR Convective IGCC Total Plant Capital Costs	47
Exhibit 28 Case 3 - PWR Convective IGCC Capital Investment & Operating Cost Requirement	t
Summary (94% Capacity factor)	48
Exhibit 29 Case 3 - PWR Convective IGCC Capital Investment & Operating Cost Requirement	t
Summary (90% Capacity factor)	49
Exhibit 30 Case 3 - PWR Convective IGCC Capital Investment & Operating Cost Requirement	t
Summary (85% Capacity factor)	50
Exhibit 31 Case 4 - Shell Gasifier-Based IGCC Plant Block Flow Diagram	53
Exhibit 32 Case 4 - Shell Gasifier-Based IGCC Plant Stream Table	54
Exhibit 33 Case 4 - Shell Gasifier-Based IGCC Plant Performance Summary	59

Exhibit 34 Case 4 - Shell Gasifier-Based IGCC Total Plant Capital Costs with Dual Gasifier	
Train 6	0
Exhibit 35 Case 4 - Shell Gasifier-Based IGCC Total Plant Capital Costs with Redundant	
Gasifier Train	1
Exhibit 36 Case 4 - Shell Gasifier-Based IGCC Capital Investment & Operating Cost	
Requirement Summary (94% Capacity factor)	2
Exhibit 37 Case 4 - Shell Gasifier-Based IGCC Capital Investment & Operating Cost	
Requirement Summary (90% Capacity factor) 6	3
Exhibit 38 Case 4 - Shell Gasifier-Based IGCC Capital Investment & Operating Cost	
Requirement Summary (85% Capacity factor) 6	4
Exhibit 39 Case 5 - PWR H ₂ Production Plant Block Flow Diagram	6
Exhibit 40 Case 5 - PWR H ₂ Production Plant Stream Table	7
Exhibit 41 Case 5 - PWR H ₂ Production Plant Performance Summary7	2
Exhibit 42 Case 5 - PWR H ₂ Production Total Plant Capital Costs7	4
Exhibit 43 Case 5 - PWR H ₂ Production Plant Capital Investment & Operating Cost Requirement	ıt
Summary (94% Capacity factor)7	5
Exhibit 44 Case 5 - PWR H ₂ Production Plant Capital Investment & Operating Cost Requirement	ıt
Summary (90% Capacity factor) 7	6
Exhibit 45 Case 5 - PWR H ₂ Production Plant Capital Investment & Operating Cost Requirement	ıt
Summary (85% Capacity factor)7	7
Exhibit 46 Case 6 - GE Energy H ₂ Production Plant Block Flow Diagram	0
Exhibit 47 Case 6 - GE Energy H ₂ Production Plant Stream Table	1
Exhibit 48 Case 6 - GE Energy H ₂ Production Plant Performance Summary	7
Exhibit 49 Case 6 - GE Energy H ₂ Production Total Plant Capital Costs with Dual Gasifier Train	n
	8
Exhibit 50 Case 6 - GE Energy H ₂ Production Total Plant Capital Costs with Redundant Gasifie	r
Train	9
Exhibit 51 Case 6 - GE Energy H ₂ Production Plant Capital Investment & Operating Cost	
Requirement Summary (94% Capacity factor)	0
Exhibit 52 Case 6 - GE Energy H ₂ Production Plant Capital Investment & Operating Cost	
Requirement Summary (90% Capacity factor)9	1
Exhibit 53 Case 6 - GE Energy H ₂ Production Plant Capital Investment & Operating Cost	
Requirement Summary (85% Capacity factor)9	2
Exhibit 54 Performance Summary and Economic Analysis Results	5

LIST OF ACRONYMS AND ABBREVIATIONS

acfm	Actual cubic feet per minute				
AGR	Acid Gas Removal				
ASU	Air Separation Unit				
BACT/RACT Best/Reasonably available control technolo					
CFR	Code of Federal Regulations				
COS	Carbonyl Sulfide				
DCS	Distributed Control System				
DOE	Department of Energy				
EPRI	Electric Power Research Institute				
ERC	Emission Reduction Credits				
FGD	Flue gas desulfurization				
GEE	General Electric Energy				
HHV	Higher heating value				
HP	High Pressure				
HRSG	Heat Recovery Steam Generator				
IGCC	Integrated Gasifier Combined Cycle				
kWe	Kilowatt Electrical				
kWh	Kilowatt hour				
kWt	Kilowatt Thermal				
LAER	Lowest achievable emission rate				
LCOE	Levelized Cost of Electricity				
lb/hr	pound per hour				
LHV	Lower heating value				
LNB	Low NOx Burner				
LP	Low Pressure				
MDEA	Methyldiethanolamine				
MMBtu	Million British thermal unit				
MMlb	Million pounds				
MWe	Megawatt Electrical				
MWh	Megawatt hour				
MWt	Megawatt Thermal				
NGCC	Natural gas combined cycle				
NOx	Oxides of nitrogen				
NSPS	New Source Performance Standards				
NSR	New Source Review				
ppmvd	Parts per million volume, dry				
PRB	Powder River Basin				
psia	Pounds per square inch absolute				
PWR	Pratt & Whitney Rocketdyne				
SCR	Selective catalytic reduction				
SOx	Oxides of sulfur				
TGTU	Tail gas treating unit				
TPC	Total Plant Cost				
tpd	tons per day				
WGS	Water Gas Shift				

EXECUTIVE SUMMARY

This report compares the performance and cost of commercial Integrated Gasification Combined Cycle (IGCC) plants using General Electric Energy (GEE) and Shell gasifiers with conceptual IGCC plant designs using the Pratt & Whitney Rocketdyne (PWR) compact gasifier. The PWR gasifier is also compared with the GEE gasifier in hydrogen production and carbon capture mode. With the exception of the PWR gasifier, the plants are designed with commercially available equipment to be operational in approximately 2010. All results should be considered preliminary and dictated in large part by the selected design basis. Exhibit 1 lists the basic design configuration for each case included in this topical report.

Case	Unit Cycle	Steam Cycle, psig/°F/°F	Combustion Turbine	Gasifier/Boiler Technology	H ₂ S Separation/ Removal
1	IGCC	1800/1050/1050	2 x GE 7FB PWR Radiant Quench		Selexol
2	IGCC	1800/1050/1050	2 x GE 7FB	GE Energy Radiant Quench	Selexol
3	IGCC	1800/1050/1050	2 x GE 7FB	PWR Convective	Sulfinol
4	IGCC	1800/1050/1050	2 x GE 7FB	Shell Convective	Sulfinol
5	H ₂	1200/1000	None	PWR	Selexol
6	H ₂	1200/1000	None	GE Energy	Selexol

Exhibit 1 Plant Configuration Summary

Note: All gasifiers use 95 mol% O2 as an oxidant and a Claus Plant for Sulfur Recovery

The Total Plant Cost and corresponding Levelized Cost of Electricity (LCOE) for each case have been evaluated at three levels of total plant availability, or capacity factors – 85%, 90% and 94%. For the commercial IGCC plants (based on GEE and Shell gasifiers), the most optimistic projections yield 85% capacity factor when excluding a spare gasification train in the design and 90% when including the spare. Based on PWR claims, a 94% capacity factor was assumed for systems without a spare gasifier train. While it is not expected that the GEE and Shell cases will achieve a 94% capacity factor with a single spare gasification train, these case were evaluated at a 94% CF only for purposes of economic comparison to the PWR case.

The performance results for each case are summarized in Exhibit 2. It is important to note that results for the PWR gasifier are projections. The PWR gasifier has not been demonstrated at commercial-scale, while the GEE and Shell gasifiers have widespread commercial operating experience.

Cases 1 and 2 compare the PWR gasifier with the GEE gasifier, both in Radiant Quench heat recovery mode, using a similar design basis. Gross steam turbine power output for the GEE gasifier is 52 MW higher than the PWR gasifier; however, this advantage is partially offset by a 22 MW higher auxiliary load requirement for the GEE gasifier and a 13% lower thermal input for the PWR case. The overall results indicate a 3 percentage point net plant efficiency (HHV) improvement of the PWR IGCC over the GEE IGCC. In addition to the efficiency improvement, Case 1 costs nearly \$134 million less (\$147/kWe) and shows an 8% reduction in the levelized cost of electricity on a common capacity factor. If one compared each plant at its maximum projected capacity factor without a spare gasification train (85% for GEE and 94% for PWR), the reduction in cost of electricity is nearly 15%.

Exhibit 2 Performance Summary and Economic Analysis Results

	Case 1	Case 2	Case 3	Case 4	Case 5	Case 6
	PWR Badiant	GE Energy Rediant	PWR	Shell	PWR	GE Energy
	Quench	Quench	Convective	Convective	I I2 FIAIIL	H_2 Plant
Performance						
Gas Turbine Power, MW_{e}	464.0	464.0	464.0	464.0	None	None
Sweet Gas Expander, MW_{e}	11.8	11.9	10.9	None	None	None
Steam Turbine Power, MW_e	230.7	282.2	239.9	270.4	85.9	75.0
Gross Power Output, MW_e	706.5	758.1	714.8	734.4	85.9	75.0
Auxiliary Power Load, MW_e	101.3	123.2	101.1	109.8	116.5	124.8
Net Power Output, MW _e	605.2	634.8	613.7	624.6	(30.6)	(49.8)
Net Plant Efficiency (HHV)	42.2%	39.2%	42.9%	42.0%	68.1%	59.4%
Net Plant Heat Rate, Btu/kWh HHV	8,078	8,699	7,957	8,130	N/A	N/A
Thermal Input, MW _t	1,433	1,619	1,431	1,488	1,433	1,433
Consumables/Products						
Coal Feed Flowrate, lb/hr	419,045	473,379	418,574	435,161	419,050	419,050
Gasifier Oxidant (95% O ₂), lb/hr	294,706	396,246	294,374	337,137	294,709	350,770
Hydrogen Product, lb/hr	None	None	None	None	56,179	50,322
Sulfur Product, lb/hr	10,452	11,839	10,414	10,891	10,478	10,462
Economics						
85% Capacity Factor						
Total Plant Cost, \$x1000	838,323	972,345	743,294	948,732	471,950	555,461
Total Plant Cost, \$/kW	1,385	1,532	1,211	1,519	N/A	N/A
LCOE, mills/kWh	48.9	53.4	44.6	52.8	\$0.85/kg	\$1.10/kg
90% Capacity Factor						
Total Plant Cost, \$x1000	838,323	1,057,235	743,294	1,045,428	471,950	592,858
Total Plant Cost, \$/kW	1,385	1,665	1,211	1,674	N/A	N/A
LCOE, mills/kWh	46.9	54.3	42.8	54.2	\$0.82/kg	\$1.10/kg
94% Capacity Factor						
Total Plant Cost, \$x1000	838,323	1,057,235	743,294	1,045,428	471,950	592,858
Total Plant Cost, \$/kW	1,385	1,665	1,211	1,674	N/A	N/A
LCOE, mills/kWh	45.4	52.5	41.5	52.5	\$0.80/kg	\$1.07/kg

A – Total Plant Costs for Cases 2, 4 and 6 at 90% and 94% CF in this table include spare gasification trains

B – LCOE is Levelized Cost of Electricity. Costs for a spare gasifier were added to Cases 2 and 4 for 94% CF data.

C – Case 5 & 6 show Total Plant Cost of Hydrogen in \$/kg of H₂/day and Levelized Cost of Hydrogen in \$/kg H₂.

Cases 3 and 4 were designed to compare the PWR Gasifier with the Shell Gasifier, both in syngas quench/convective syngas cooler heat recovery mode, using a similar design basis. Gross steam turbine power output for the Shell Gasifier is 30 MW higher than the PWR Gasifier; however, this advantage is partially offset by a 9 MW higher auxiliary load requirement for the Shell Gasifier and a 4% lower thermal input for the PWR case. The result is a nominal 1 percentage point net plant efficiency (HHV) gain for the PWR IGCC over the Shell IGCC. In addition, there is a projected \$206 million (\$308/kWe) reduction in total plant cost for the PWR plant. This is primarily attributable to incorporating a less expensive gasifier and syngas cooling system in addition to a reduction in coal handling, preparation and feed costs associated with using a proprietary dry coal feed pump, currently under development at PWR, instead of a conventional lock hopper system. The PWR process shows a 15% and 20% reduction in the levelized cost of electricity for a capacity factor of 85% and 94%, respectively.

Cases 5 and 6 were designed to compare the PWR Gasifier with the GE Energy Gasifier, both in hydrogen production with ~90% carbon capture mode, using a similar design basis. With each design processing 419,050 lb/hr of coal, the overall hydrogen production rate for the GE Energy gasifier is 50,322 lb/hr hydrogen, while the hydrogen production rate for the PWR gasifier is 56,179 lb/hr. Another disadvantage in the GEE design is that it requires 50 MWe input in order to operate at the stated production, while the PWR design requires only 31 MWe for its respective hydrogen production. Power requirements for both cases include the supplemental power generation of each plant. Case 5 costs more than \$83 million less and shows a 23% reduction in the levelized cost of hydrogen on a common capacity factor.

PWR gasifier performance predictions are based on a proprietary one-dimensional kinetic model validated with experimental data from earlier PWR work with coal-fired systems in the areas of hydrogasification-liquefaction, steam/oxygen gasification, magnetohydrodynamic (MHD) power, acetylene production, and low NOx/SOx combustion.[1,2,3,4] Carbon conversion predictions from the one-dimensional kinetic model have been anchored to a limited amount of experimental kinetics data. Future pilot plant gasifier tests will provide a means to vary process parameters (reactant flow rates and conditions, reactor length, residence times, and pressures) and monitor results (carbon conversion, syngas composition, and heat losses) to further validate model kinetics.

Performance results for the PWR gasifier were based on methodology provided to RDS by PWR for the NASA code, "Chemical Equilibrium for Analysis". Details are provided in the following sections of this report. Non-idealities that can occur in either pilot scale or commercial scale reactors are not accounted for by this method, which assumes 100% carbon conversion based on ideal mixing, even temperature distribution and a high coal particle heat rate. These assumptions must be verified in pilot and commercial scale demonstrations before one can conclude that the performance of the PWR Gasifier is an improvement over either GE or Shell, whose gasifiers have been widely demonstrated commercially.

This page intentionally left blank

1 DESIGN BASIS

Six plant designs have been prepared for this comparison. The three PWR cases are compared with similar corresponding GE Energy gasifier and Shell gasifier cases. Exhibit 3 lists the basic process configuration for each case.

Case	Unit Cycle	Steam Cycle, psig/°F/°F	Combustion Turbine	Gasifier/Boiler Technology	H ₂ S Separation/ Removal
1	IGCC	1800/1050/1050	2 x GE 7FB	PWR Radiant Quench	Selexol
2	IGCC	1800/1050/1050	2 x GE 7FB	GE Energy Radiant Quench	Selexol
3	IGCC	1800/1050/1050	2 x GE 7FB PWR Convective		Sulfinol
4	IGCC	1800/1050/1050	2 x GE 7FB Shell Convective		Sulfinol
5	H ₂	1200/1000	None PWR		Selexol
6	H ₂	1200/1000	None	GE Energy	Selexol

Exhibit 3 Plant Configuration Summary

Note: All gasifiers use 95 mol% O₂ as an oxidant and a Claus Plant for Sulfur Recovery

The high pressure operation of both the GE Energy and PWR gasifiers favors the use of a physical solvent for acid gas removal; therefore, Selexol has been chosen for this service in Cases 1, 2, 5 and 6. Sulfinol (a hybrid chemical/physical solvent commonly used in conjunction with the Shell dry feed gasifier) was used to compare PWR with Shell in Cases 3 and 4.

1.1 Site Characteristics

The plants in this study are assumed to be located in the mid-west United States. Ambient conditions and site characteristics are shown in Exhibit 4 and Exhibit 5.

All cases in this study are modeled with Illinois #6 coal. The coal characteristics are listed in Exhibit 6.

Elevation, ft	0
Barometric Pressure, psia	14.696
Design Ambient Temperature, Dry Bulb, °F	59
Design Ambient Temperature, Wet Bulb, °F	51.5
Design Ambient Relative Humidity, %	60

Exhibit 4 Site Ambient Conditions

Location	Green-field, Midwestern USA
Topography	Level
Size, acres	300
Transportation	Rail
Ash Disposal	Off Site
Water	Municipal
Access	Land locked, also having access by train and highway

Exhibit 5 Site Characteristics

Rank	Bituminous			
Seam	Illinois #6 (Herrin)			
Source	Old Ben	mine [5]		
Proximate Ar	alysis (weight '	%) (Note A)		
	As-Received	Dry		
Moisture	11.12	0.00		
Ash	9.70	10.91		
Volatile Matter	34.99	39.37		
Fixed Carbon	44.19	49.72		
Total	100.00	100.00		
Sulfur	2.51	2.82		
HHV, Btu/lb	11,666	13,126		
LHV, Btu/lb	11,252	12,712		
	As-Received	Dry		
Moisture	11.12	0.00		
Carbon	63.75	71.72		
Hydrogen	4.50	5.06		
Nitrogen	1.25	1.41		
Chlorine	0.29	0.33		
Sulfur	2.51	2.82		
Ash	9.70	10.91		
Oxygen (Note B)	6.88	7.75		
Total	100.00	100.00		
otes: A. The proximate analysis assumes sulfur as a Volatile mat				

Exhibit 6 Design Coal Characteristics

Notes: A. The proximate analysis assumes sulfur as a Volatile matter. B. By Difference

1.2 Environmental Constraints

The following regulatory assumptions are used in the design basis for assessing environmental control technologies:

- > EPA Clear Air Mercury Rule (CAMR) requirement will be used for mercury.
- BACT Determination emission limits will be used for particulates, sulfur dioxide, nitrogen oxides and carbon monoxide.

- NOx Emission Reduction Credits (ERCs) and allowances are not available for the project emission requirements.
- Solid waste disposal is either offsite at a fixed \$/ton fee or is classified as a byproduct for reuse, claiming no net revenue (\$/ton) or cost.
- > Raw water is available to meet technology needs.
- Wastewater discharge will meet effluent guidelines rather than water quality standards for this screening.

The environmental approach for the study is to evaluate each case on the same regulatory design basis, considering differences in fuel and technology. The current enacted process for establishing environmental requirements for new plants is the EPA's New Source Performance Standards (NSPS) [6]. Since all cases are located at a green-field site, NSPS could be a starting point for design air emission rates. NSPS emission requirements are summarized in Exhibit 7.

Pollutant	Emission Limit After 2008
Particulate Matter (PM),	0.03 lb/10 ⁶ Btu and 99% reduction for solid
Sulfur Dioxide (SO ₂)	1.2 lb/MMBtu and at least 90% reduction, or sliding scale down to a minimum 70% reduction when emissions are 0.6 lb/MMBtu or less
Nitrogen Oxides (NOx)	0.15 lb/MMBtu (1.6 lb/MWh)
Opacity	Less then 20% (6 minute average, except for one 6-minute period per hour of not more than 27%)

Exhibit 7 NSPS Emission Requirements Summary

Note: Dry flue gas, 6% O₂

However, permitting a new plant with emission rates controlled by NSPS requirements likely will not be acceptable to the EPA and/or individual states, who would probably invoke The New Source Review (NSR) permitting process. The NSR process is expected to result in allowable emission rates more stringent than NSPS. The NSR process requires installation of emission control technology meeting either Best Available Control Technology (BACT) determinations for new sources being located in areas meeting ambient air quality standards (attainment areas), or Lowest Achievable Emission Rate (LAER) technology for sources being located in areas not meeting ambient air quality standards (non-attainment areas). Environmental area designation varies by county and can be established only for a specific site location. Based on EPA Green Book Non-attainment Area Map [7] relatively few areas in the Midwestern US are classified as "non-attainment"; therefore, for the purposes of this study, the site is assumed to be in an attainment area. Representative BACT emission limits and technology to meet them are provided in Exhibit 8.

Process	Pollutants	Emissions Limitation	Type of Technology
PC Boiler PM/PM-10		0.012 – 0.015 lb/10 ⁶ Btu	Fabric Filter or ESP
	Sulfur Dioxide	0.06 – 0.2 lb/10 ⁶ Btu	Low-Sulfur Fuel, FGD
	Nitrogen Oxides	0.07 – 0.15 lb/10 ⁶ Btu	SCR
	Carbon Monoxide	0.10 – 0.15 lb/10 ⁶ Btu	Combustion Controls
IGCC PM/PM-10		0.013 lb/10 ⁶ Btu	Syngas water scrubber
	Sulfur Dioxide	0.17 lb/10 ⁶ Btu	AGR
Nitrogen Oxides		15 ppmvd @15% O ₂	Nitrogen or steam diluent injection, Combustion controls
	Carbon Monoxide	25 ppmvd @15% O ₂	Combustion Controls
NGCC	PM/PM-10	0.01 – 0.013 lb/10 ⁶ Btu	Combustion Controls
	Sulfur Dioxide	0.04 – 0.17 lb/10 ⁶ Btu	Low-Sulfur Fuel
	Nitrogen Oxides	2.5 – 25 ppmvd @ 15% O ₂	LNB, SCR
	Carbon Monoxide	3 – 20 ppmvd @ 15% O ₂	Combustion Controls

Exhibit 8 Best Available Control Technology Determinations by Technology

Note: IGCC data is based on Tampa Electric Company TECO-Polk BACT determination [8]

2 CASE 1 - PWR GASIFIER BASED IGCC PLANT DESCRIPTION AND RESULTS

Case 1 produces 605 MWe at 42.2% efficiency (8,078 BTU/kWh heat rate). The plant costs \$838MM and, at 85% CF, provides electricity at 48.9 mills/kWh.

A block flow diagram and associated stream tables for the Case 1 PWR gasifier-based IGCC plant in radiant quench heat recovery mode are presented in Exhibit 9 and Exhibit 10, respectively. Performance, capital costs and operating costs are presented in Exhibit 11 through Exhibit 14.

2.1 Process Description

The Case 1 PWR IGCC plant consists of two compact, radiant-cooled gasifiers each fed with approximately 1,800 tpd of 95% oxygen produced from an on site Air Separation Unit (ASU) and approximately 2,500 tpd of Illinois #6 coal dried from 11.12% to 5% in a syngas/HRSG gas-fired coal dryer. It is assumed that Illinois #6 coal has 5% inherent moisture.

A proprietary PWR coal extrusion feed system is utilized for feeding dried coal to the PWR gasifier. Each gasifier train in the PWR process requires approximately 130 tpd of nitrogen from the Air Separation Unit as coal transport gas as well as approximately 390 tpd of steam injection.

The PWR process claims an adiabatic flame temperature of ~2600°F, 1,000 psig operating pressure, and 100% carbon conversion. Approximately 490 tpd of slag (100% ash) is removed from the gasification reaction products as hot syngas and molten solids from the reactor flow downward into a radiant cooler where the syngas is cooled and the ash solidifies. Raw syngas continues downward into a quench system and then into a syngas scrubber for removal of entrained solids. Since the syngas temperature exiting the quench is too low for COS hydrolysis to efficiently occur, the syngas is heated to 400°F before entering a hydrolysis reactor, where >99% of the carbonyl sulfide is converted to hydrogen sulfide. The gas is then cooled to ~100°F and cleaned of ammonia and mercury prior to feeding the gas to the acid gas removal system.

A single stage Selexol AGR process separates the syngas into an acid gas stream containing hydrogen sulfide and carbon dioxide, and into a sweet gas stream containing the fuel gas to be combusted in the gas turbine. The acid gas stream is sent to a two bed Claus sulfur recovery plant with a tail gas clean up unit. Using approximately 130 tpd of 95% oxygen, the Claus process catalytically converts the gaseous sulfur compounds into elemental sulfur for collection and sale. A hydrogenation reactor converts the remaining gaseous sulfur dioxide into hydrogen sulfide, which may be separated from the tail gas in an MDEA tail gas treating unit. H₂S is then recycled back to the Claus plant thermal reaction zone to improve overall sulfur recovery.

The clean synthesis gas stream exits the Selexol unit at approximately 125°F, where it is humidified with hot water at 380°F. The humidifier accomplishes some reheating of the syngas while partially diluting the gas for NOx mitigation in the gas turbine combustors. After sulfur removal, the sweet fuel gas is also depressurized through an expander from 695 psia to 380 psia to generate ~12 MW_e of power.

Further reheating of the syngas, to 535°F, improves the gas turbine heat rate by reducing the amount of combustion energy used for heating the gas. In order to minimize NOx formation, the synthesis gas must be diluted to ~120 Btu/scf (LHV basis). Approximately 11,000 tpd of

nitrogen diluent and 1,700 tpd of steam are added to accomplish the dilution. The resultant fuel gas stream is combined with compressed and heated ambient air and then combusted in two parallel General Electric 7FB model turbines.

The combustion products exiting the gas turbines are fed to a HRSG for heat recovery and additional power production before discharge to the atmosphere.

2.2 Modeling Assumptions for PWR Gasifier

PWR has made the following assumptions about their gasifier performance in the absence of substantial pilot data. These assumptions were used in the RDS analysis:

- 1. 100% carbon conversion based on expectations of the multi-injection port nozzle and high coal particle heat rate.
- 2. Fuel-bound atomic species exist in their elemental state for the purposes of the Gibbs Free Energy minimization calculations.
- 3. Unrestricted Gibbs Free Energy Minimization calculations for most governing gasification reactions due to the prototype reactor design features, which support assumptions of ideality: high coal particle heat rate, uniform coal distribution and 100% carbon conversion.
- 4. 80% of fuel-bound nitrogen is converted to ammonia. Gibbs Free Energy Minimization calculations for the ammonia-forming gasification reaction was manipulated to achieve this vendor-specified value.

RDS assessment of the five main modeling assumptions used in the study is:

- 1. The multi-port injection nozzle theoretically will promote improved mixing and gasification, which may result in an improved coal particle heat rate and an even temperature distribution. However, this assumption is optimistic and will have to be proven in actual demonstrations. The performance estimates made on this assumption must be considered a "best case scenario".
- 2. This is a common assumption made in systems analyses that produces reasonable results.
- 3. Unrestricted Gibbs Free Energy Minimization generally does not produce results that match actual performance for current commercial systems. Non-idealities that occur in either pilot scale or commercial scale reactors are not accounted for in this method. The efficiency of the gasifier, as a result, must be considered an upper-limit "best case scenario". Sensitivity studies will be required to determine the impact of incorporating these non-idealities on a case to case basis.
- 4. RDS has found few instances where near 80% of fuel-bound nitrogen is converted to ammonia. According to results published in the EPRI Coal Gasification Guidebook [9], 10-20% seems to be a reasonable assumption. With all other things equal, the increase in available hydrogen in the case converting 10% of fuel-bound N₂ over the case converting 80% of fuel-bound N₂, can result in an absolute increase in gasifier overall cold gas efficiency (including ammonia and sulfur species) of up to 0.35%.

Background Information Provided by PWR

PWR provided the following text to describe the history and source of their gasifier performance projections:

PWR advanced gasifier performance predictions are based on a proprietary one-dimensional kinetic model validated with experimental data from earlier PWR work with coal-fired systems in the areas of hydrogasification-liquefaction, steam/oxygen gasification, magnetohydrodynamic (MHD) power, acetylene production, and low NOx/SOx combustion. [1, 2]

The kinetic model describes entrained flow gasifier reactor dynamics in terms of the following physical and chemical phenomena:

- (1) Particle boundary layer transport
- (2) Conservation equations of the bulk flow
- (3) Chemical reactions of the freestream
- (4) Thermochemical and freestream transport properties
- (5) Convective and radiative heat transfer between the gasifier walls and internal process stream.
- (6) Detailed coal devolatilization kinetics, heterogeneous oxidation/gasification kinetics, and mass transport within the pore structure of the particles. This PWR proprietary coal particle sub-model is fundamentally as detailed as the recent published work by Niksa et al. [4].

Reactant mixing was demonstrated to occur at the point where the impinging coal and steam/oxygen streams meet in previous work at PWR [3]. This allows modeling of the entrained flow gasifier on the basis of uniformly mixed reactants across the reactor cross section.

The kinetic model uses freestream gas equilibrium in those regions where the gas temperatures are high (usually above 2,000°F) and the kinetics are extremely fast. Otherwise homogeneous gas phase kinetics is incorporated. All kinetic and equilibrium calculations are based on localized conditions within the freestream gas or coal particle.

In addition to the one-dimensional kinetic model, PWR also uses a chemical equilibrium computer code -- based upon the NASA code, "Chemical Equilibrium for Analysis" – as an initial first cut approximation for slagging entrained flow coal gasifiers. These chemical equilibrium results are modified to reflect past experience that NH₃ content is considerably higher than equilibrium predictions. Based on hydrogasification experimental and one-dimensional kinetic model results, it is assumed that 80% of the fuel-bound nitrogen is converted to ammonia and does not equilibriue with the free-stream gas. The PWR equilibrium model is also capable of including heat loss estimates through the gasifier walls.

For the first cut slagging gasifier equilibrium approximation, the gasifier product gas is based on the freestream chemical equilibrium calculated at the exit point. Unconverted carbon (due to kinetic constraints) is treated as an inert for the purpose of equilibrium calculations, as it is throughout the reactor. The amount of unconverted carbon and reactor heat losses can be provided from either actual experimental results or the one-dimensional kinetic model described above.

Carbon conversion predictions from the one-dimensional kinetic model have been anchored to a limited amount of experimental kinetics data. The pilot plant gasifier will provide a means to vary process parameters (reactant flow rates and conditions, reactor length, residence times, and pressures) and monitor results (carbon conversion, syngas composition, heat losses) to continue validating model kinetics. Though the carbon conversion in actual operation will be limited by design and operating constraints, it was assumed in this study that 100% carbon conversion is achieved.

Exhibit 9 Case 1 - PWR IGCC Plant Block Flow Diagram

1	2	3	4	5	6^	7^	8	9	13	14	15
0.0094	0.0594	0.0322	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0019	0.0000	0.0015
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.6082	0.0000	0.4737
0.0003	0.0138	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0173	0.0000	0.0135
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.3386	0.0000	0.2638
0.0104	0.4392	0.0000	0.0000	0.0000	1.0000	1.0000	1.0000	0.0000	0.0000	1.0000	0.2211
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.7722	0.4876	0.0178	1.0000	0.0500	0.0000	0.0000	0.0000	0.0000	0.0340	0.0000	0.0265
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.2077	0.0000	0.9500	0.0000	0.9500	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	1.0000	1.0000
31,027	1,030	340	32,103	9,268	2,612	1,112	3,591	0	35,264	10,028	45,275
895,275	25,288	10,944	899,325	294,706	47,017	20,021	64,695	0	686,321	180,511	866,680
0	0	0	0	0	372,027	372,027	0	40,634	0	0	0
271	70	90	450	800	59	195	800	385	124	380	359
225.0	16.4	56.4	375.0	1,191.2	14.7	1,200.0	1,200.0	930.0	768.0	755.0	700.0
0.83	0.12	0.308	1.08	2.76			1.60		2.39	50.61	1.54
28.85	24.55	32.18	28.01	31.80			18.02		19.46	18.02	19.14
	1 0.0094 0.0000 0.0000 0.0003 0.0000 0.0000 0.0104 0.0000 0.7722 0.0000 0.2077 0.0000 1.0000 31,027 895,275 0 271 225.0 0.83 28.85	1 2 0.0094 0.0594 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.7722 0.4876 0.0000 0.0000 0.2077 0.0000 0.0000 0.0000 1.0000 1.0000 31,027 1,030 895,275 25,288 0 0 271 70 225.0 16.4 0.83 0.12 28.85 24.55	1 2 3 0.0094 0.0594 0.0322 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0104 0.4392 0.0000 0.0000 0.0000 0.0000 0.7722 0.4876 0.0178 0.0000 0.0000 0.0000 0.2077 0.0000 0.9500 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000 31,027 1,030 340 895,275 25,288 10,944 0 0 0 225.0 16.4 56.4 0.83 0.12 0.308 28.85 24.55 32.18	1 2 3 4 0.0094 0.0594 0.0322 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 31,027 1,030 340 32,103 <td>12345$0.0094$$0.0594$$0.0322$$0.0000$$0.0000$$0.0000$$0.0000$$0.0000$$0.0000$$0.0000$$0.0000$$0.0000$$0.0000$$0.0000$$0.0000$$0.0000$$0.0000$$0.0000$$0.0000$$0.0000$$0.0003$$0.0138$$0.0000$$1.0000$$1.0000$$1.0000$$1.0000$$1.0000$$1.0000$$1.0000$$1.0000$$1.0000$$1.0000$$1.0000$$0.0000$$2077$$0.030$$340$$32,103$$9,268$$895,275$$25,288$$10,944$$899,325$$294,706$$0$$0$$0$$0$$0$</td> <td>12345$6^{\circ}$0.00940.05940.03220.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00030.01380.00000.01040.43920.00001.00001.00001.00001.00001.00001.000031,0271,03034032,1039,2682,612895,27525,28810,944899,325294,70647,017000000059225.016.456.4375.01,191.214.7<</td> <td>1 2 3 4 5 6^c 7^c 0.0094 0.0594 0.0322 0.0000</td> <td>12345$6^{\circ}$$7^{\circ}$80.00940.05940.03220.0000<td< td=""><td>12345$6^{\circ}$$7^{\circ}$890.00940.05940.03220.0000<</td><td>1 2 3 4 5 6° 7° 8 9 13 0.0094 0.0594 0.0322 0.0000</td><td>1 2 3 4 5 6^{\circ} 7^{\circ} 8 9 13 14 0.0094 0.0594 0.0322 0.0000</td></td<></td>	12345 0.0094 0.0594 0.0322 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0138 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 2077 0.030 340 $32,103$ $9,268$ $895,275$ $25,288$ $10,944$ $899,325$ $294,706$ 0 0 0 0 0	12345 6° 0.00940.05940.03220.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00030.01380.00000.01040.43920.00001.00001.00001.00001.00001.00001.000031,0271,03034032,1039,2682,612895,27525,28810,944899,325294,70647,017000000059225.016.456.4375.01,191.214.7<	1 2 3 4 5 6 ^c 7 ^c 0.0094 0.0594 0.0322 0.0000	12345 6° 7° 80.00940.05940.03220.0000 <td< td=""><td>12345$6^{\circ}$$7^{\circ}$890.00940.05940.03220.0000<</td><td>1 2 3 4 5 6° 7° 8 9 13 0.0094 0.0594 0.0322 0.0000</td><td>1 2 3 4 5 6^{\circ} 7^{\circ} 8 9 13 14 0.0094 0.0594 0.0322 0.0000</td></td<>	12345 6° 7° 890.00940.05940.03220.0000<	1 2 3 4 5 6° 7° 8 9 13 0.0094 0.0594 0.0322 0.0000	1 2 3 4 5 6^{\circ} 7^{\circ} 8 9 13 14 0.0094 0.0594 0.0322 0.0000

Exhibit 10 Case 1 - PWR IGCC Plant Stream Table

A - Solids flowrate includes coal; V-L flowrate includes water from coal (11.12 wt% moisture)

Note: Streams containing proprietary data are excluded from these stream tables.

	16	17	18	19	20	21	22	23	24	25	26	27
V-L Mole Fraction												
Ar	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0094	0.0094	0.0094	0.0071	0.0071
CH ₄	0.0015	0.0015	0.0015	0.0000	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
CO	0.4737	0.4737	0.4737	0.0320	0.0081	0.0000	0.0000	0.0012	0.0000	0.0000	0.0000	0.0000
CO ₂	0.0135	0.0135	0.0135	0.1360	0.0041	0.4972	0.0000	0.1164	0.0003	0.0003	0.0796	0.0796
COS	0.0000	0.0000	0.0000	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
H ₂	0.2638	0.2638	0.2638	0.0178	0.0016	0.0004	0.0000	0.0879	0.0000	0.0000	0.0000	0.0000
H ₂ O	0.2211	0.2211	0.2211	0.0518	0.0000	0.0764	0.0000	0.5093	0.0104	0.0104	0.1151	0.1151
H ₂ S	0.0000	0.0000	0.0000	0.4819	0.0132	0.4254	0.0000	0.0253	0.0000	0.0000	0.0000	0.0000
N ₂	0.0265	0.0265	0.0265	0.2804	0.0005	0.0006	0.0000	0.2505	0.7722	0.7722	0.7019	0.7019
NH ₃	0.0000	0.0000	0.0000	0.0000	0.9724	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
O ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.2077	0.2077	0.0963	0.0963
SO ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	1.0000	1.0000	1.0000	1.0000
V-L Flowrate (lb _{mol} /hr)	45,275	45,275	45,275	672	274	74	0	1,303	222,646	12,417	278,713	278,713
V-L Flowrate (lb/hr)	866,680	866,680	866,680	21,582	4,771	2,808	0	29,653	6,424,310	358,284	7,972,540	7,972,540
Solids Flowrate (lb/hr)	0	0	0	0	0	0	10,452	0	0	0	0	0
Temperature (°F)	535	423	535	124	450	120	297	300	59	828	1,120	270
Pressure (psia)	695.0	380.0	375.0	375.0	364.5	28.0	22.6	15.5	14.7	282.2	14.8	14.7
Density (lb/ft ³)	1.25	0.77	0.67	2.09	0.68	0.18		0.04	0.08	0.59	0.03	0.06
Molecular Weight	19.14	19.14	19.14	32.14	17.43	37.78		22.76	28.85	28.85	28.60	28.60

Exhibit 10 (continued) Case 1 - PWR IGCC Plant Stream Table

2.3 Equipment Descriptions

Coal Preparation and Feed Systems

The coal as received contains 11.12 percent moisture, part of which is surface moisture (that which is easily removed from the coal) with the balance being inherent (chemically bound) moisture. For transportation of the coal at high pressure, drying of the surface moisture is required. For the purposes of this study, it was assumed that there is 5 percent inherent moisture in the coal and that the coal is dried to this level as a result. The coal is simultaneously crushed and dried using a combination of Claus tail gas and air. Crushed and dried coal is delivered to a surge hopper with an approximate 2-hour capacity.

The coal is drawn from the surge hoppers and fed through a developmental proprietary dry coal feed pump system, which uses nitrogen to convey the coal to the gasifiers.

Air Separation Unit

The air separation plant is designed to produce a nominal output of 3,700 tons/day of 95 percent pure O_2 from two ASU production trains. Most of the oxygen is used in the gasifier. A small portion, approximately 130 tons/day, is used in the Claus plant. The air compressor is powered by an electric motor. Approximately 11,000 tons/day of nitrogen are also recovered, compressed, and used for syngas dilution for NOx mitigation in the gas turbine combustor and as a carrying gas for coal transport into the gasifier.

Gasifier

The PWR gasifier is a plug-flow entrained reactor with a multi-port injection nozzle to increase the kinetics and conversion of the gasification reaction. The PWR gasification process gasifies dried coal with steam and 95% (by volume) oxygen at ~2600°F and 1,000 psia. The PWR process claims a 100% carbon conversion and faster kinetics allowing for a more compact gasifier design. The prototype reactor designed to process 3,000 tons of dried coal per day is anticipated to be 39 inches in diameter and 15 feet in length. The amount of dried coal processed is approximately 5,000 tons per day.

Syngas Cooling

Hot syngas and molten solids from the reactor flow downward through a radiant heat exchanger where the syngas is cooled to 1,000°F. High pressure steam is generated in the radiant cooler and is superheated in the HRSG by the gas turbine exhaust. The gas and solidified slag then flow into a water-filled quench chamber. Raw syngas saturated at about 380°F then flows to the syngas scrubber for removal of entrained solids. The solids collect in the water sump at the bottom of the gasifier and are removed periodically, using a lock hopper system.

Solids collected in the quench gasifier water sump are removed by gravity and forced circulation of water from the lock hopper circulating pump. Fine material, which does not settle as easily, is removed in the gasification blowdown which is sent to the vacuum flash drum by way of the syngas scrubber.

Syngas Scrubbing

The syngas enters the syngas scrubber and is directed downwards by a dip tube into a water sump at the bottom of the syngas scrubber. Most of the solids are separated from the syngas at the bottom of the dip tube as the syngas goes upwards through the water. From the overhead of the syngas scrubber, the syngas enters the low-temperature gas cooling section for further cooling.

The water removed from the syngas scrubber contains all the solids that were not removed in the quench gasifier water sump. In order to limit the amount of solids recycled to the quench chamber, a continuous blowdown stream is removed from the bottom of the syngas scrubber. The blowdown is sent to the vacuum flash drum in the black water flash section. The circulating scrubbing water is pumped by the syngas scrubber circulating pumps to the quench gasifier.

The slag handling system removes solids from the gasification process equipment. These solids will consist of any unconverted carbon and essentially all of the ash contained in the feed coal. Since we have assumed 100% carbon conversion in this study, the "slag" will be 100% ash. These solids are in the form of glass, which is non-leaching and fully encapsulates any metals.

COS Hydrolysis / Low Temperature Gas Cooling

 H_2S and COS are at significant concentrations, requiring removal for the power plant to achieve the low design level of SO₂ emissions. H_2S is removed in an acid gas removal process; however, because COS is not readily removable, it is first catalytically converted to H_2S in a COS hydrolysis unit.

Following the quench/scrubber system, the gas is reheated to $\sim 400^{\circ}$ F and fed to the COS hydrolysis reactor. The COS is hydrolyzed with steam in the gas over a catalyst bed to H₂S, which is more easily removed by the AGR solvent. Any HCN in the syngas will also be reacted in the COS hydrolysis unit.

Before the raw fuel gas can be treated in the AGR process, it must be cooled to about 100° F. During this cooling through a series of heat exchangers, part of the water vapor condenses. This water, which contains some NH₃, is sent to the wastewater treatment section.

Mercury Removal

Mercury removal was based on packed beds of sulfur-impregnated carbon similar to what has been used at Eastman Chemical's gasification plant. Dual beds of sulfur-impregnated carbon with approximately a 20-second superficial gas residence time should achieve >90 percent reduction of mercury in addition to removal of other volatile heavy metals such as arsenic.

Acid Gas Removal

Case 1 utilizes a single-train Selexol process to remove sulfur with minimal CO₂ capture. The Selexol process treats the stream of synthesis gas to reduce the level of total sulfur (H₂S and COS) to no more than 30 ppm prior to it being sent to the combustion turbine, while maximizing the CO₂ slip. A recycle stream of acid gas from the sulfur recovery unit (SRU) is also treated. An acid gas stream that contains ~50 percent sulfur is produced.

Untreated gas is sent to the absorber, where it contacts cooled regenerated solvent, which enters at the top of the tower. In the absorber, H_2S , COS, CO_2 , and other gases such as hydrogen, are

transferred from the gas phase to the liquid phase. The treated gas exits the absorber and is sent to fuel gas saturation and the expander.

The solvent streams from the absorber and reabsorber are termed rich solvent, and are combined and sent to the lean/rich exchanger. In the lean/rich exchanger, the temperature of the rich solvent is increased by heat exchange with the lean solvent. The rich solvent is then sent to the H_2S concentrator, where portions of the CO₂, CO, H₂, and other gases are stripped from the solvent. Nitrogen from the ASU is used as the stripping medium. The temperature of the overhead stream from the H_2S concentrator is reduced in the stripped gas cooler. The stream is then sent to the reabsorber, where H_2S , COS, and a portion of the other gases are transferred to the liquid phase. The stream from the reabsorber is sent to the gas turbine.

The partially regenerated solvent exits the H_2S concentrator and is sent to the stripper, where the solvent is regenerated. Tail gas from the SRU is recycled back to the AGR unit and enters with the feed to the reabsorber.

Sour Water Stripper

The sour water stripper removes NH_3 , H_2S , and other impurities from the waste stream of the scrubber and water condensed in the low temperature gas cooling section. The sour gas stripper consists of a sour drum that accumulates sour water from the gas scrubber and condensate from syngas coolers. Sour water from the drum flows to the sour stripper, which consists of a packed column with a steam-heated reboiler. Sour gas is stripped from the liquid and sent to the sulfur recovery unit. Remaining water is sent to wastewater treatment.

Sulfur Recovery System

The sulfur recovery unit is a Claus bypass type sulfur recovery unit utilizing oxygen instead of air followed by a SCOT tail gas unit. The Claus plant produces molten sulfur by reacting approximately one third of the H_2S in the feed to SO_2 , then reacting the H_2S and SO_2 to sulfur and water. The combination of Claus technology and SCOT tail gas technology will result in a sulfur recovery exceeding 99 percent of that fed to the Claus plant and a vent gas of less than 2 ppmv of SO_2 .

Utilizing oxygen instead of air in the Claus plant reduces the overall cost of the sulfur recovery plant. The sulfur plant will produce approximately 112 long tons of elemental sulfur per day. Feed for this case consists of acid gas from both acid gas cleanup units and a vent stream from the sour water stripper in the gasifier section. Vent gas from the tail gas treatment unit is vented to the coal dryer, contributing to total plant sulfur emissions of less than 0.022 lb/MMBtu, meeting air quality standards.

Syngas Expander

After sulfur removal, the sweet fuel gas is saturated with condensate, reheated, and depressurized through an expander from 695 psia to 380 psia, which is near the pressure required by the gas turbine. The expander generates $\sim 12 \text{ MW}_{e}$ of power.

Gas Turbine Generator

Both of the combustion turbine generators are General Electric 7FB model turbines modified for syngas firing. The maximum output of each is expected to be 232 MW, based on the rotor

torque limit. Each machine is an axial flow, single spool, constant speed unit, equipped with variable inlet guide vanes and syngas version of diffusion-flame combustor with nitrogen diluent injection. The turbine exhaust gases are conveyed through a HRSG to recover the large quantities of thermal energy that remain.

The gas turbine generator selected for this application is based on a natural gas fired 7FB machine. In this service, with syngas from an IGCC plant, the machine requires some modifications to the burner and turbine nozzles in order to properly combust the medium-Btu gas and expand the combustion products in the turbine section of the machine. A reduction in rotor inlet temperature of about 50°F is expected, relative to a production model 7FB machine firing natural gas. This temperature reduction may be necessary to not exceed design basis gas path temperatures throughout the expander. If the first-stage rotor inlet temperature were maintained at the design value, gas path temperatures downstream of the inlet to the first (HP) turbine stage may increase, relative to natural-gas-fired temperatures, due to gas property changes.

The syngas fired 7FB gas turbine is a developmental machine that GE expects to have available in the 2010 time frame for commercial applications.

Heat Recovery Steam Generator / Steam Turbine

The HRSG supplies steam to a steam turbine generator which is a tandem compound, two-flow exhaust, single reheat, condensing, GE model D-11, or equal. The steam turbine consists of an HP section, an IP section, and one double-flow LP section, all connected to the generator by a common shaft. The HP and IP sections are contained in a single-span, opposed-flow casing, with the double-flow LP section in a separate casing. The overall power output from the steam turbine is 230.7 MWe.

2.4 Performance Results

For the Case 1 PWR IGCC plant, the combustion turbines are two General Electric 7FB model turbines in parallel, each producing 232 MWe for a total of 464 MWe. The steam turbine produces 230.7 MWe (gross), and the sweet gas expander produces 11.8 MWe. Total auxiliary power required is 101.3 MWe, yielding a net plant power output of 605.2 MWe.

Overall plant efficiency (HHV) is 42.2% equating to a heat rate of 8,078 Btu/kWh (HHV).

The performance results are summarized in Exhibit 11.

POWER SUMMARY – 100 Percent Load									
(Gross Power at Generator Terminals,	, kWe								
Plant Output									
Gas Turbine Power	464,000	kW _e							
Sweet Gas Expander Gross Power	11,780	kW _e							
Steam Turbine Power	230,670	kW _e							
Total	706,450	kW _e							
Auxiliary Load									
Coal Handling	540	kW _e							
Coal Milling	1,100	kW _e							
Coal Pump	1,500	kW _e							
Slag Handling	330	kW _e							
Air Separation Unit Auxiliaries	1,000	kW _e							
ASU Main Air Compressor	38,620	kW _e							
Oxygen Compressor	9,330	kW _e							
Nitrogen Compressor	25,800	kW _e							
Gasifier N ₂ Compressor	510	kW _e							
Boiler Feedwater Pump	5,240	kW _e							
Condensate Pump	230	kW _e							
Circulating Water Pump	4,670	kW _e							
Cooling Tower Fans	1,060	kW _e							
Scrubber Pumps	300	kW _e							
Selexol Unit Auxiliaries	2,700	kW _e							
Gas Turbine Auxiliaries	2,000	kW _e							
Steam Turbine Auxiliaries	1,000	kW _e							
Claus Plant/TGTU Auxiliaries	200	kW _e							
Miscellaneous Balance-of-Plant	3,000	kW _e							
Transformer Losses	2,170	kW _e							
Total	101,300	kW _e							
Plant Performance									
Net Plant Power	605,150	kW _e							
Net Plant Efficiency (HHV)	42.2%								
Net Plant Heat Rate (HHV)	8,078	Btu/kWh							
Coal Feed Flowrate	419,045	lb/hr							
Thermal Input ¹	1,432,701	kWt							
Condenser Duty	1,125	MMBtu/hr							

Exhibit 11 Case 1 - PWR IGCC Plant Performance Summary

1 - HHV of Illinois #6 11.12% Moisture Coal is 11,666 Btu/lb

2.5 Economic Results

The capital and operating costs estimate results are shown in Exhibit 12 through Exhibit 15. The Total Plant Cost is estimated to be 1,385 \$/kW. At a 94%, 90% and 85% capacity factor, the Levelized Cost of Electricity is 45.4, 46.9 and 48.9 mills/kWh, respectively.

	Client:			<u>GCC 100</u>				Report Date:	20-Jan-06	
	Project:	Rocketdyne I	GCC Power	Plant						
					TOTAL PLA	NT COST SUN	IMARY			
	Case:	Case 1 Rocke	tdyne/GE C	ompact Gasifi	er IGCC for F	Power Production	۱			
	Plant Size:	605.15	MW,net	Estim	ate Type:	Conceptual	Cost Base (December) 2004	; \$x1000	
Acct	Item/Decoription	Equipment	Material	La	100 In dire et	Bare Erected	Eng'g CM	Contingencies	TOT. PLAN	
1			1 017				п.U.& гее	Process Project		• • • • •
		9,770	1,017	1,020	048	19,909	1,997	4,393	\$20,308	\$44
2	COAL & SORBENT PREP & FEED	12,900		9,968	137	28,986	2,899	6,377	\$38,261	\$63
3	FEEDWATER & MISC. BOP SYSTEMS	7,704		7,822	548	22,450	2,245	5,727	\$30,422	\$50
4	GASIFIER & ACCESSORIES									
4.1	Gasifiler and Water Quench	W/ 4.2	W/ 4.2	57 704	4.041	154.910	15 401	17.740	\$100.040	\$211
4.2	Air Separation Unit	61 415	22,281	07,734 wleauin	4,041	61 415	6 1 4 1	3,378	\$100,042	\$117
4.4-4.9	Other Gasification Equipment	w/ 4.2	w/ 4.2	moquip.			0,111	0,010	• •••••••	*
	Subtotal 4	121,061	33,391	57,734	4,041	216,227	21,623	21,127	\$258,976	\$428
5	GAS & CLEANUP AND PIPING	29,619	3,634	29,203	2,044	64,500	6,450	10,333	\$81,283	\$134
6	COMBUSTION TURBINE/ACCESSORIES									
6.1	Combustion Turbine Generator	115,259		4,153	291	119,703	11,970	13,167	\$144,840	\$239
6.2-6.9	Combustion Turbine Accessories		555	624	44	1,223	122	403	\$1,748	\$3
	Subtotal 6	115,259	555	4,777	334	120,925	12,093	13,571	\$146,589	\$242
7	HRSG, DUCTING & STACK									
7.1	Heat Recover Stream Generator	30,540	0 700	4,064	284	34,888	3,489	3,838	\$42,215	\$70
1.2-7.9	SUR System, Ductwork and Stack	2,730	2,182	3,264	228 519	9,010	4 200	1,082 5,510	\$11,593	\$19
		00,270	2,102	7,020	010	40,099	4,090	0,019	\$00,000	409
81	STEAM TORBINE GENERATOR Steam TG & Accessories	25.093		3 1 2 6	210	28 438	2 844	3 1 2 8	\$34.410	\$57
8.2-8.9	Turbine Plant Auxiliaries & Steam Piping	6.698	615	4.673	327	12,314	1.231	2.346	\$15.891	\$26
	Subtotal 8	31,791	615	7,799	546	40,751	4,075	5,474	\$50,301	\$83
9	COOLING WATER SYSTEM	7,542	4,696	6,654	466	19,358	1,936	3,906	\$25,200	\$42
10	ASH/SPENT SORBENT HANDLING SYS	11,011	6,163	10,473	733	28,380	2,838	3,359	\$34,577	\$57
11	ACCESSORY ELECTRIC PLANT	13,368	5,955	15,451	1,082	35,856	3,586	6,673	\$46,114	\$76
12	INSTRUMENTATION & CONTROL	5,879		4,531	317	11,617	1,162	1,809	\$14,587	\$24
13	IMPROVEMENTS TO SITE	2,907	1,713	6,487	454	11,561	1,156	3,815	\$16,532	\$27
14	BUILDINGS & STRUCTURES		4,835	5,851	450	11,136	1,114	3,063	\$15,313	\$25
	TOTAL COST	\$402,093	\$79,404	\$181,906	\$12,213	\$675,615	\$67,562	\$95,146	\$838,323	\$1,385

Exhibit 12 Case 1 - PWR IGCC Total Plant Capital Costs

TITLE/DEFINITION			1/20/2006
Case: Plant Size: Fuel(type): Design/Construction: TPC(Plant Cost) Year: Capacity Factor:	Case 1 Rocketdyne/GE Compact Gasifier IGCC fo 605.15 (MW,net) Illinois #6 3.5 (years) 2004 94.0%	r Power Production Heat Rate Fuel Cost: BookLife: TPI Year: CO2 Removed	8,078 Btu/kWh 1.27 (\$/MMBtu) 20 (years) 2004 (Jan.) (TPD)
CAPITAL INVESTMENT Process Capital & Facilities Engineering(incl.C.M.,H.O.& Fee) Process Contingency Project Contingency		<u>\$x1000</u> 675,615 67,562 0 95,146	<u>\$/kW</u> 1,116.4 111.6 0.0 157.2
	TOTAL PLANT COST(TPC) TOTAL CASH EXPENDED \$838,323 AFDC 62,702	838,323	1,385.3
	TOTAL PLANT INVESTMENT(TPI)	901,025	1,488.9
Royalty Allowance Preproduction Costs Inventory Capital Initial Catalyst & Chemicals(w/equ	ip.)	1,000 23,184 7,670	1.7 38.3 12.7
Land Cost		555	0.9
	TOTAL CAPITAL REQUIREMENT(TCR)	\$933,434	1,542.5
OPERATING & MAINTENANCE (Operating Labor Maintenance Labor Maintenance Material Administrative & Support Labor	<u>COSTS(2004)</u>	\$x1000 5,466 9,521 18,045 4,127	<u>\$/k₩-yr</u> 9.0 15.7 29.8 6.8
	TOTAL OPERATION & MAINTENANCE(2004)	\$37,158	61.4
	FIXED 0 & M (2004)	\$34,929	57.7
	VARIABLE O & M (2004)	\$2,229	3.7
CONSUMABLE OPERATING CO Water Chemicals Other Consumables Waste Disposal	STS, LESS FUEL(2004)	\$x1000 4,504 3,862 0 2,844	<mark>¢/k₩h</mark> 0.09 0.08 0.00 0.06
	TOTAL CONSUMABLES(2004)	\$11,210	0.22
BY-PRODUCT CREDITS (2004)		(\$2,144)	(0.04)
FUEL COST(2004)		\$51,120	1.03
PRODUCTION COST SUMMARY Fixed O & M Variable O & M Consumables By-product Credit Fue	TOTAL PRODUCTION COST	<u>200</u>	04 Costs <u>¢/kWh</u> 0.70 0.04 0.22 (0.04) <u>1.03</u> 1.95 2.59
2004 BUSBAR COST OF POWER	FCR=0.138 R		4.54
	_		

Exhibit 13 Case 1 - PWR IGCC Capital Investment & Operating Cost Requirement Summary (94% Capacity factor)

TITLE/DEFINITION			1/20/2006
Case: Plant Size: Fuel(type): Design/Construction: TPC(Plant Cost) Year: Capacity Factor:	Case 1 Rocketdyne/GE Compact Gasifier IGCO 605.15 (MW,net) Illinois #6 3.5 (years) 2004 90.0%	C for Power Production Heat Rate Fuel Cost: BookLife: TPI Year: CO2 Removed	1 8,078 Btu/kWh 1.27 (\$/MMBtu) 20 (years) 2004 (Jan.) (TPD)
		\$x1000	¢ #/\.
Process Capital & Facilities		675,615	<u>9//. 1</u> ,116.4
Engineering(incl.C.M.,H.O.& Fee)		67,562	111.6
Process Contingency Project Contingency		0 95.146	0.0 157.2
i roject contangentoj			
	TOTAL PLANT COST(TPC) TOTAL CASH EXPENDED \$838,323 AFDC 62,702	838,323	1,385.3
	TOTAL PLANT INVESTMENT(TPI)	901,025	1,488.9
Royalty Allowance		1,000	1.7
Preproduction Costs		23,145	38.2
Inventory Capital Initial Catalyst & Chemicals(w/equ	ip)	7,449	12.3
Land Cost	ν.Α λ	555	0.9
	TOTAL CAPITAL REQUIREMENT(TCR)	\$933,174	1,542.1
OPERATING & MAINTENANC	E COSTS(2004)	\$x1000	\$/k₩-yr
Operating Labor		5,466	9.0
Maintenance Labor		9,521	15.7
Administrative & Support Labor		4,127	∠9.8 6.8
	TOTAL OPERATION & MAINTENANCE(2004)	\$37,158	61.4
	FI×ED O & M (2004)	\$33,442	55.3
	VARIABLE O & M (2004)	\$3,716	6.1
CONSUMABLE OPERATING C	COSTS LESS FUEL(2004)	\$x1000	¢/kWh
Water		4,312	0.09
Chemicals		3,702	0.08
Other Consumables Waste Disposal		0 2 723	0.00
maste Disposal		2,120_	
	TOTAL CONSUMABLES(2004)	\$10,737	0.23
BY-PRODUCT CREDITS (2004	4)	(\$2,052)	(0.04)
FUEL COST(2004)		\$48,945	1.03
		200	4 Costs
PRODUCTION COST SUMMA	<u>RY</u>		<u>¢/kWh</u>
Fixed U & M Variable O & M			0.70
Consumables			0.23
By-product Credit			(0.04)
Fuel			1.03
	TOTAL PRODUCTION COST		1.99
2004 CARRYING CHARGES (<u>Capital)</u> FCR=0.138		2.70
2004 BUSBAR COST OF POW	' <u>ER</u>		4.69

Exhibit 14 Case 1 - PWR IGCC Capital Investment & Operating Cost Requirement Summary (90% Capacity factor)

TITLE/DEFINITION				1/20/2006
Case: Plant Size: Fuel(type): Design/Construction: TPC(Plant Cost) Year: Capacity Factor:	Case 1 Rocketdyne/GE Cor	npact Gasifier IGCC 605.15 (MW.net) nois #6 3.5 (years) 2004 85.0%	for Power Productio Heat Rate Fuel Cost: BookLife: TPI Year: CO2 Removed	n 8,078 Btu/kWh 1.27 (\$/MMBtu) 20 (years) 2004 (Jan.) (TPD)
CAPITAL INVESTMENT Process Capital & Facilities Engineering(incl.C.M.,H.O.& Fee) Process Contingency Project Contingency			\$x1000 675,615 67,562 0 95,146	\$/k₩ 1,116.4 111.6 0.0 157.2
,	TOTAL PLANT COST(TPC) TOTAL CASH EXPENDED AFDC	\$838,323 62,702	838,323	1,385.3
	TOTAL PLANT INVESTMENT(TPI)	901,025	1,488.9
Royalty Allowance Preproduction Costs Inventory Capital Initial Catalyst & Chemicals(w/equ	in)		1,000 23,096 7,016	1.7 38.2 11.6
Land Cost	чР-4		555	0.9
	TOTAL CAPITAL REQUIREME	NT(TCR)	\$932,692	1,541.3
OPERATING & MAINTENANC Operating Labor Maintenance Labor Maintenance Material Administrative & Support Labor	<u>E COSTS(2004)</u>		\$x1000 5,466 9,521 18,045 4,127	<mark>\$/k₩-yr</mark> 9.0 15.7 29.8 6.8
	TOTAL OPERATION & MAINTE	ENANCE(2004)	\$37,158	61.4
	FIXED O & M (2004)		\$31,584	52.2
	VARIABLE O & M (2004)		\$5,574	9.2
CONSUMABLE OPERATING C Water Chemicals Other Consumables Waste Disposal	COSTS, LESS FUEL(2004)		\$x1000 4,072 3,502 0 2,572	∉/k\₩h 0.09 0.08 0.00 0.06
	TOTAL CONSUMABLES(2004)	\$10.147	0.23
BY-PRODUCT CREDITS (2004	4)		(\$1,938)	(0.04)
FUEL COST(2004)			\$46,226	1.03
PRODUCTION COST SUMMAI Fixed O & M Variable O & M Consumables By-product Credit Fuel	₹ TOTAL PRODUCTION COST		200	04 Costs ¢/kWh 0.70 0.12 0.23 (0.04) 1.03 2.03
2004 CARRYING CHARGES (<u>Capital)</u>			2.86
2004 BUSBAR COST OF POW	FCR=0.138 / <u>ER</u>			4.89

Exhibit 15 Case 1 - PWR IGCC Capital Investment & Operating Cost Requirement Summary (85% Capacity factor)

3 CASE 2 - GE ENERGY GASIFIER BASED IGCC PLANT DESCRIPTION AND RESULTS

Case 2 produces 634.8 MWe at 39.2% efficiency (8,669 BTU/kWh heat rate). The TPC is \$972MM and, at 85% CF, produces electricity at 53.4 mills/kWh. Adding a spare gasification train increases the TPC to \$1,057MM and, at 90% CF, results in a LCOE of 54.3 mills/kWh, and at 94% CF, results in a LCOE of 52.5 mills/kWh

A block flow diagram and associated stream tables for the Case 2 GE Energy gasifier-based IGCC plant in radiant quench heat recovery mode are presented in Exhibit 16 and Exhibit 17, respectively. Performance, capital costs and operating costs are presented in Exhibit 18 through Exhibit 23.

3.1 Process Description

Case 2 is similar to Case 1 with the following exceptions:

- 1. The gasifier used in Case 2 is the GE Energy Radiant Quench Gasifier with an operating pressure of 815 psia, as compared to 1,000 psia for the PWR gasifier.
- 2. A 63% coal/water slurry is fed to the GE gasifier while dry coal is fed to the PWR gasifier.

The gasifier vessel is a refractory-lined, high-pressure combustion chamber. Coal slurry is transferred from the slurry storage tank to the gasifier with a high-pressure pump. At the top of the gasifier vessel is located a combination fuel injector through which coal slurry feedstock and oxidant (oxygen) are fed. The coal slurry and the oxygen feeds react in the gasifier at about 815 psia at a high temperature (in excess of 2500°F) to produce syngas. Hot syngas and molten solids from the reactor flow downward into a radiant cooler where the syngas is cooled to 1,000°F and the ash solidifies. Raw syngas continues downward into a quench system and then into a syngas scrubber for removal of entrained solids.

The gas goes through a series of gas coolers and cleanup processes including a COS hydrolysis reactor, a carbon bed mercury removal system, and a Selexol AGR plant. Slag captured by the syngas scrubber is recovered in a slag recovery unit. Regeneration gas from the AGR plant is fed to a Claus plant, where elemental sulfur is recovered.

This plant utilizes a combined cycle for combustion of the syngas from the gasifier to generate electric power. Humidification of the syngas and nitrogen dilution aids in minimizing formation of NO_x during combustion in the gas turbine burner section. A Brayton cycle using air and combustion products as working fluid is used in conjunction with a conventional subcritical steam Rankine cycle. The two cycles are coupled by generation of steam in the heat recovery steam generator (HRSG), by feedwater heating in the HRSG, and by heat recovery from the IGCC process.

Exhibit 16 Case 2 - GE Energy IGCC Plant Block Flow Diagram

	1	2	3	4	5	6 ^A	7	13	14
V-L Mole Fraction									
Ar	0.0094	0.0063	0.0360	0.0012	0.0360	0.0000	0.0000	0.0000	0.0000
CH ₄	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
CO	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0000
CO ₂	0.0003	0.0014	0.0000	0.0000	0.0000	0.0000	0.0000	0.3102	0.0000
COS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0007	0.0000
H ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
H ₂ O	0.0104	0.0433	0.0000	0.0000	0.0000	1.0000	0.0000	0.0267	0.0000
H ₂ S	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.4449	0.0000
N ₂	0.7722	0.9098	0.0140	0.9988	0.0140	0.0000	0.0000	0.2175	0.0000
NH ₃	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
O ₂	0.2077	0.0393	0.9500	0.0000	0.9500	0.0000	0.0000	0.0000	0.0000
SO ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	0.0000
V-L Flowrate (Ib _{mol} /hr)	48,684	14,324	180	33,932	12,295	13,728	0	822	0
V-L Flowrate (lb/hr)	1,404,740	398,709	5,795	950,561	396,246	247,104	0	29,134	0
Solids Flowrate (lb/hr)	0	0	0	0	0	420,739	51,961	0	11,839
Temperature (°F)	225	57	90	475	205	62		120	353
Pressure (psia)	190.0	16.4	30.0	375.0	1,024.7	814.7		30.0	23.6
Density (lb/ft ³)	0.746	0.085	0.164	1.047	4.632			0.171	
Molecular Weight	28.854	27.835	32.229	28.013	32.229			35.435	

Exhibit 17 Case 2 - GE Energy IGCC Plant Stream Table

A - Solids flowrate includes dry coal and soot recycle; V-L flowrate includes slurry water and water from coal Note: Streams containing proprietary data are excluded from these stream tables.

	15	16	17	18	19	20	21	22
V-L Mole Fraction								
Ar	0.0121	0.0091	0.0091	0.0088	0.0094	0.0094	0.0088	0.0088
CH ₄	0.0000	0.0007	0.0007	0.0006	0.0000	0.0000	0.0000	0.0000
СО	0.1762	0.3682	0.3682	0.3512	0.0000	0.0000	0.0000	0.0000
CO ₂	0.3693	0.1048	0.1048	0.1310	0.0003	0.0003	0.0834	0.0834
COS	0.0009	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
H ₂	0.0893	0.3326	0.3326	0.3142	0.0000	0.0000	0.0000	0.0000
H ₂ O	0.0022	0.1762	0.1762	0.1639	0.0104	0.0104	0.0906	0.0906
H ₂ S	0.0090	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
N ₂	0.3410	0.0084	0.0084	0.0301	0.7722	0.7722	0.7148	0.7148
NH ₃	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0 ₂	0.0000	0.0000	0.0000	0.0000	0.2077	0.2077	0.1025	0.1025
SO ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
V-L Flowrate (lb _{mol} /hr)	625	47,441	47,441	50,984	240,224	12,011	296,165	296,165
V-L Flowrate (lb/hr)	19,881	919,520	919,520	1,039,920	6,931,510	346,575	8,575,410	8,575,410
Solids Flowrate (lb/hr)	0	0	0	0	0	0	0	0
Temperature (°F)	100	341	520	535	59	724	1,119	270
Pressure (psia)	368.0	700.0	695.0	370.0	14.7	225.6	14.8	14.7
Density (lb/ft ³)	1.950	1.595	1.281	0.707	0.076	0.512	0.025	0.056
Molecular Weight	31.809	19.383	19.383	20.397	28.854	28.854	28.955	28.955

Exhibit 17 (continued) Case 2 - GE Energy IGCC Plant
3.2 Equipment Descriptions

Air Separation Unit

The air separation plant is designed to produce a nominal output of 4,900 tons/day of 95 percent pure O_2 from two ASU production trains. Most of the oxygen is used in the gasifier. A small portion, approximately 70 tons/day, is used in the Claus plant. The air compressor is powered by an electric motor. Approximately 11,000 tons/day of nitrogen are also recovered, compressed, and used as a diluent in the gas turbine combustor.

Gasifier

This GE IGCC plant utilizes two gasification trains to process a total of 5,700 tons per day of coal. The gasifier operates at near maximum capacity. The slurry feed pump takes suction from the slurry run tank, and the discharge is sent to the feed injector of the GEE gasifier. Oxygen from the ASU is vented during preparation for startup and is sent to the feed injector during normal operation. The air separation plant supplies 2,400 tons of 95 percent purity oxygen per day to each gasifier.

The gasifier vessel is a refractory-lined, high-pressure combustion chamber. Coal slurry is transferred from the slurry storage tank to the gasifier with a high-pressure pump. At the top of the gasifier vessel is located a combination fuel injector through which coal slurry feedstock and oxidant (oxygen) are fed. The coal slurry and the oxygen feeds react in the gasifier at about 815 psia at a high temperature (in excess of 2,500°F) to produce syngas.

The syngas consists primarily of hydrogen and carbon monoxide, with lesser amounts of water vapor and carbon dioxide, and small amounts of hydrogen sulfide, carbonyl sulfide, methane, argon, and nitrogen. The heat in the gasifier liquefies coal ash.

Syngas Cooling

Hot syngas and molten solids from the reactor flow downward through a radiant heat exchanger where the syngas is cooled to 1,000°F. High pressure steam is generated in the radiant cooler and is superheated in the HRSG by the gas turbine exhaust. The gas and solidified slag then flow into a water-filled quench chamber. Raw syngas, saturated at about 450°F, then flows to the syngas scrubber for removal of entrained solids. The solids collect in the water sump at the bottom of the gasifier and are removed periodically, using a lock hopper system.

Solids collected in the quench gasifier water sump are removed by gravity and forced circulation of water from the lock hopper circulating pump. Fine material, which does not settle as easily, is removed in the gasification blowdown which is sent to the vacuum flash drum by way of the syngas scrubber.

Syngas Scrubbing

Refer to Case 1 in section 2.3 for a description of the syngas scrubbing system used in Case 2, since they are similar.

COS Hydrolysis / Low Temperature Gas Cooling

Refer to Case 1 in section 2.3 for a description of the COS Hydrolysis and Low Temperature Gas Cooling systems used in Case 2, since they are similar.

Mercury Removal

Refer to Case 1 in section 2.3 for a description of the Mercury Removal system used in Case 2, since they are similar.

Acid Gas Removal

Refer to Case 1 in section 2.3 for a description of the Acid Gas Removal system used in Case 2, since they are similar.

Sour Water Stripper

Refer to Case 1 in section 2.3 for a description of the Sour Water Stripper used in Case 2, since they are similar.

Sulfur Recovery System

The sulfur recovery unit is a Claus bypass-type sulfur recovery unit utilizing oxygen instead of air. The Claus plant produces molten sulfur by reacting approximately a third of the H_2S in the feed to SO_2 , then reacting the H_2S and SO_2 to sulfur and water. Utilizing oxygen instead of air in the Claus plant reduces the overall cost of the sulfur recovery plant. The sulfur plant will produce approximately 127 long tons of elemental sulfur per day. Feed for this case consists of acid gas from both acid gas cleanup units and a vent stream from the sour water stream in the gasifier section. Tail gas from the Claus unit, after hydrogenation, is recycled to the Selexol unit. The combination of Claus technology and tail gas recycle will result in an overall sulfur recovery exceeding 99 percent.

Syngas Expander

After sulfur removal, the sweet fuel gas is saturated with condensate, reheated, and depressurized through an expander from 695 psia to 370 psia, which is near the pressure required by the gas turbine. The expander generates $\sim 12 \text{ MW}_{e}$ of power.

Gas Turbine Generator

Refer to Case 1 in section 2.3 for a description of the gas turbine generator used in Case 2, since they are similar.

Heat Recovery Steam Generator / Steam Turbine

Refer to Case 1 in section 2.3 for a description of the HRSG and Steam Turbine used in Case 2, since they are similar. The overall power output from the steam turbine is 282 MWe (gross).

3.3 Performance Results

For Case 2, GE IGCC plant, the combustion turbines are two General Electric Model 7FB turbines in parallel, each producing 232 MWe for a total of 464 MWe. The steam turbine produces 282 MWe, and the sweet gas expander produces 12 MWe. Total auxiliary power required is 123 MWe, yielding a net plant power output of 635 MWe.

Overall plant efficiency (HHV) is 39.2%, with a heat rate of 8,699 Btu/kWh.

The performance results are summarized in Exhibit 18.

POWER SUMMARY – 100 Percent Load		
(Gross Power at Generator Terminals, k)	Ne	
Plant Output		
Gas Turbine Power	464,000	kW _e
Sweet Gas Expander Gross Power	11,920	kW _e
Steam Turbine Power	282,150	kW _e
Total	758,070	kW _e
Auxiliary Load		
Coal Handling	90	kW _e
Coal Milling	2,210	kW _e
Coal Slurry Pumps	530	kW _e
Slag Handling and Dewatering	1,130	kW _e
Air Separation Unit Auxiliaries	1,000	kW _e
ASU Main Air Compressor	56,520	kW _e
Oxygen Compressor	11,090	kW _e
Nitrogen Compressor	26,020	kW _e
Plant Tail Gas Recycle Compressor	980	kW _e
Boiler Feedwater Pump	5,200	kW _e
Condensate Pump	220	kW _e
Flash Bottoms Pump	200	kW _e
Circulating Water Pump	5,430	kW _e
Cooling Tower Fans	1,230	kW _e
Scrubber Pumps	250	kW _e
Selexol Unit Auxiliaries	2,730	kW _e
Gas Turbine Auxiliaries	2,000	kW _e
Steam Turbine Auxiliaries	1,000	kW _e
Claus Plant/TGTU Auxiliaries	200	kW _e
Miscellaneous Balance-of-Plant	3,000	kW _e
Transformer Losses	2,210	kW _e
Total	123,240	kW _e
Plant Performance		
Net Auxiliary Load	123,240	kW _e
Net Plant Power	634,830	kW _e
Net Plant Efficiency (HHV)	39.2%	
Net Plant Heat Rate (HHV)	8,699	Btu/kWh
Coal Feed Flowrate	473,379	lb/hr
Thermal Input ¹	1,618,468	kWt
Condenser Duty	1,306	MMBtu/hr

Exhibit 18 Case 2 - GE Energy IGCC Plant Performance Summary

1 - HHV of Illinois #6 11.12% Moisture Coal is 11,666 Btu/lb

3.4 Economic Results

The capital and operating costs results for Case 2, GE IGCC are shown in Exhibit 19 through Exhibit 23. The Total Plant Cost with a dual gasifier train is estimated to be 1,532 \$/kW and 1,665 \$/kW for a plant with a redundant three gasifier train. At 94% and 90% capacity factors, the Levelized Cost of Electricity for the redundant train arrangements are 52.5 and 54.3 mills/kWh, respectively. At 85% capacity factor, the LCOE for the dual train arrangement is 53.4 mills/kWh.

	Client:	DEPARTMEN	IT OF ENER	GY				Report Date:	17-Jan-06	
	Project:	Rocketdyne I	GCC Power	Plant						
	<u>_</u>					NICOSISUM	IMARY			
	Case: Plant Size:	Case 2 -GEE	MW pet	/MW IGCC w/	o CO2 ata Typa:	Concentual	Cost Ross (Docom	2004	· \$v1000	
Acct		Equipment		Laun		Bare Erected	Epgig CM	contingencies		TCOST
No.	Item/Description	Cost	Cost	Direct	Indirect	Cost \$	H.O.& Fee Proc	ess Project	\$	\$/kW
1	COAL & SORBENT HANDLING	10,495	2,003	8,486	594	21,578	2,158	4,747	\$28,483	\$45
2	COAL & SORBENT PREP & FEED	16,205		12,499	875	37,867	3,787	5,176	\$46,830	\$74
3	FEEDWATER & MISC. BOP SYSTEMS	8,664		8,497	595	25,298	2,530	6,376	\$34,204	\$54
4	GASIFIER & ACCESSORIES									
4.1	Syngas Cooler Gasification System	68,505	30,077	52,814	3,697	155,093	15,509	17,060	\$187,663	\$296
4.2	Syngas Cooler (w/Gasifier-\$)	w/4.1				70 470	7.047	4.000	* 00.000	A100
4.3	ASU/Uxidant Compression	15 972	15.245	w/equip.	1 207	70,473 50,441	7,047 5.047	4,200	\$61,320	\$139 \$07
4.4-4.3	Subtotal 4	160,350	45 322	71 341	4 994	282 007	28 201	27 534	\$337 742	\$532
5	GAS & CLEANUP AND PIPING	32 893	4 033	32 243	2 257	71 426	7 1 4 3	11 421	\$89,990	\$142
a l		02,000	1,000	02,210	2,201	,			••••	* • • • • •
6,1	Combustion Turbine Generator	115.259		4,153	291	119.703	11.970	13,167	\$144.840	\$228
6.2-6.9	Combustion Turbine Accessories		555	624	44	1,223	122	403	\$1,748	\$3
	Subtotal 6	115,259	555	4,777	334	120,925	12,093	13,571	\$146,589	\$231
7	HRSG, DUCTING & STACK									
7.1	Heat Recover Stream Generator	30,540		4,064	284	34,888	3,489	3,838	\$42,215	\$66
7.2-7.9	SCR System, Ductwork and Stack	4,237	3,413	4,555	319	12,524	1,252	2,261	\$16,038	\$25
	Subtotal 7	34,777	3,413	8,619	603	47,412	4,741	6,099	\$58,253	\$92
8	STEAM TURBINE GENERATOR									
8.1	Steam TG & Accessories	31,851		3,968	278	36,097	3,610	3,971	\$43,677	\$69
8.2-8.9	Turbine Plant Auxiliaries & Steam Piping	8,502	/81	5,932	415	15,630	1,563	2,978	\$20,171	\$32
		40,363	701	9,900	093 Fol	01,727	0,173	6,949	\$03,848	⊅101
9	COOLING WATER SYSTEM	9,673	5,961	8,446	591	24,571	2,457	4,958	\$31,987	\$50
10	ASH/SPENT SORBENT HANDLING SYS	12,139	6,794	11,545	808	31,288	3,129	3,703	\$38,120	\$60
11	ACCESSORY ELECTRIC PLANT	13,890	6,188	16,054	1,124	37,256	3,726	6,934	\$47,915	\$75
12	INSTRUMENTATION & CONTROL	6,109		4,708	330	12,071	1,207	1,879	\$15,157	\$24
13	IMPROVEMENTS TO SITE	2,907	1,713	6,487	454	11,561	1,156	3,815	\$16,532	\$26
14	BUILDINGS & STRUCTURES		5,240	6,450	451	12,142	1,214	3,340	\$16,696	\$26
	TOTAL COST	\$463,614	\$98,758	\$210,053	\$14,703	\$787,129	\$78,713	\$106,504	\$972,345	\$1,532

Exhibit 19 Case 2 - GE Energy IGCC Total Plant Capital Costs with a Dual Gasifier Train

	Client:	DEPARTMEN	IT OF ENER	GY				Report Date:	17-Jan-06		
	Project:	Rocketdyne K									
	Case:	Case 2 -GEE	Radiant 500	MW IGCC w/c	CO2						
	Plant Size:	634.83	MW,net	Estimat	e Type:	Conceptual	Cost Base	(December) 2004	; \$x1000		
Acct		Equipment	Material	La	oor	Bare Erected	Eng'g CM	Contingencies	TOT. PLAN	тсоят	
No.	Item/Description	Cost	Cost	Direct	Indirect	Cost \$	H.O.& Fee	Process Project	\$	\$/kW	
1	COAL & SORBENT HANDLING	10,495	2,003	8,486	594	21,578	2,158	4,747	\$28,483	\$45	
2	COAL & SORBENT PREP & FEED	16,205		12,499	875	37,867	3,787	5,176	\$46,830	\$74	
3	FEEDWATER & MISC. BOP SYSTEMS	8,664		8,497	595	25,298	2,530	6,376	\$34,204	\$54	
4 4.1 4.2	GASIFIER & ACCESSORIES Syngas Cooler Gasification System Syngas Cooler (w/Gasifier-\$)	100,000 w/4.1	45,000	75,000	5,250	225,250	22,525	24,778	\$272,553	\$429	
4.3	ASU/Oxidant Compression	76,473		w/equip.		76,473	7,647	4,206	\$88,326	\$139	
4.4-4.9	Other Gasification Equipment	15,372	15,245	18,527	1,297	50,441	5,044	6,268	\$61,753	\$97	
		191,045	4.033	95,527	0,047	352,164	30,210	30,201	\$422,032	\$000	
		32,095	4,035	32,243	2,207	/1,420	1,143	11,421	\$89,990	\$142	
6.1 6.2-6.9	COMBOSTION TORBINE/ACCESSORIES Combustion Turbine Generator Combustion Turbine Accessories Subtotal 6	115,259	555 555	4,153 624 4,777	291 44 334	119,703 1,223 120,925	11,970 122 12.093	13,167 403 13,571	\$144,840 \$1,748 \$146,589	\$228 \$3 \$231	
7 7.1 7.2-7.9	HRSG, DUCTING & STACK Heat Recover Stream Generator SCR System, Ductwork and Stack Subtotal 7	30,540 4,237 34,777	3,413 3,413	4,064 4,555 8,619	284 319 603	34,888 12,524 47,412	3,489 1,252 4,741	3,838 2,261 6,099	\$42,215 \$16,038 \$58,253	\$66 \$25 \$92	
8 8.1 8.2-8.9	STEAM TURBINE GENERATOR Steam TG & Accessories Turbine Plant Auxiliaries & Steam Piping Subtotal 8	31,851 8,502 40,353	781 781	3,968 5,932 9,900	278 415 693	36,097 15,630 51,727	3,610 1,563 5,173	3,971 2,978 6,949	\$43,677 \$20,171 \$63,848	\$69 \$32 \$101	
9	COOLING WATER SYSTEM	9,573	5,961	8,446	591	24,571	2,457	4,958	\$31,987	\$50	
10	ASH/SPENT SORBENT HANDLING SYS	12,139	6,794	11,545	808	31,288	3,129	3,703	\$38,120	\$60	
11	ACCESSORY ELECTRIC PLANT	13,890	6,188	16,054	1,124	37,256	3,726	6,934	\$47,915	\$75	
12	INSTRUMENTATION & CONTROL	6,109		4,708	330	12,071	1,207	1,879	\$15,157	\$24	
13	IMPROVEMENTS TO SITE	2,907	1,713	6,487	454	11,561	1,156	3,815	\$16,532	\$26	
14	BUILDINGS & STRUCTURES		5,240	6,450	451	12,142	1,214	3,340	\$16,696	\$26	
	TOTAL COST	\$495,109	\$113,681	\$232,239	\$16,256	\$857,286	\$85,729	\$114,221	\$1,057,235	\$1,665	

Exhibit 20
Case 2 - GE Energy IGCC Total Plant Capital Costs with a Redundant Gasifier Train

TITLE/DEFINITION			12/29/2005
Case: Plant Size: Fuel(type): Design/Construction: TPC(Plant Cost) Year: Capacity Factor:	Case 2 -GEE Radiant 500MW IGCC w/o CO2 634.83 (MW,net) Illinois #6 3.5 (years) 2004 94.0%	Heat Rate Fuel Cost: BookLife: TPI Year: CO2 Removed	8,699.0 Btu/kWh 1.27 (\$/MMBtu) 20 (years) 2010 (Jan.) (TPD)
CARITAL INVESTMENT		\$v1000	\$ <i>የ</i> ሆንያ
Process Capital & Facilities Engineering(incl.C.M.,H.O.& Fee)		857,286 85,729	1,350.4 135.0
Process Contingency Project Contingency		114,221	0.0 179.9
	TOTAL PLANT COST(TPC) TOTAL CASH EXPENDED \$1,057,235 AEDC 79.076	1,057,235	1,665.4
	TOTAL PLANT INVESTMENT(TPI)	1,136,311	1,789.9
Royalty Allowance		1,000	1.6
Preproduction Costs		28,760	45.3
Inventory Capital Initial Catalyst & Chemicals(w/equ	(qi	8,492	13.4
Land Cost	P 7	555	0.9
	TOTAL CAPITAL REQUIREMENT(TCR)	\$1,175,118	1,851.1
OPERATING & MAINTENANCE	COSTS(2004)	<u>\$x1000</u>	<u>\$/kW-yr</u>
Operating Labor		5,466	8.6
Maintenance Labor		12,008	18.9
Maintenance Material Administrative & Support Labor		4,127	35.8 6.5
	TOTAL OPERATION & MAINTENANCE(2004)	\$44,357	69.9
	FIXED 0 & M (2004)	\$41,696	65.7
	VARIABLE O & M (2004)	\$2,661	4.2
CONSUMABLE OPERATING CO	STS, LESS FUEL(2004)	<u>\$x1000</u>	<u>¢/kWh</u>
Water		4,711	0.09
Chemicals		4,761	0.09
Uther Consumables Waste Disposal		3,213	0.00
	TOTAL CONSUMABLES(2004)	\$12,685	0.24
BY-PRODUCT CREDITS (2004)		(\$2,437)	(0.05)
FUEL COST(2004)		\$57,749	1.10
PRODUCTION COST SUMMARY Fixed O & M Variable O & M		2	2004 Costs ¢/kWh 0.80 0.05
Consumables			0.24
By-product Credit			(U.U5) 1.10
Fue	TOTAL PRODUCTION COST	_	2.15
2004 CARRYING CHARGES (Ca	Dital)		3.10
2004 BUSBAR COST OF POWER	<u>2</u>		5.25

Exhibit 21 Case 2 - GE Energy IGCC Capital Investment & Operating Cost Requirement Summary (94% Capacity factor)

TITLE/DEFINITION			12/29/2005
Case: Plant Size: Fuel(type): Design/Construction: TPC(Plant Cost) Year: Capacity Factor:	Case 2 -GEE Radiant 500MW IGCC w/o CO2 634.83 (MW,net) Illinois #6 3.5 (years) 2004 90.0%	Heat Rate Fuel Cost: BookLife: TPI Year: CO2 Removed	8,699.0 Btu/kWh 1.27 (\$/MMBtu) 20 (years) 2010 (Jan.) (TPD)
CAPITAL INVESTMENT		\$x1000	\$/kW
Process Capital & Facilities		857,286	1,350.4
Process Contingency		00,729	0.0
Project Contingency		114,221	179.9
	TOTAL PLANT COST(TPC) TOTAL CASH EXPENDED \$1,057,233 AFDC 79,076	1,057,235 5 5	1,665.4
	TOTAL PLANT INVESTMENT(TPI)	1,136,311	1,789.9
Royalty Allowance		1,000	1.6
Inventory Capital		8,243	45.2
Initial Catalyst & Chemicals(w/equ Land Cost	ip.)	555	0.9
	TOTAL CAPITAL REQUIREMENT(TCR)	\$1,174,824	1,850.6
OPERATING & MAINTENANCE (COSTS(2004)	\$x1000	\$/kW-vi
Operating Labor		5,466	8.6
Maintenance Labor		12,008	18.9
Maintenance Material Administrative & Support Labor		22,755 4,127	35.8 6.5
	TOTAL OPERATION & MAINTENANCE(2004)	\$44,357	69.9
	FIXED 0 & M (2004)	\$39,921	62.9
	VARIABLE O & M (2004)	\$4,436	7.0
CONSUMABLE OPERATING CO	STS, LESS FUEL(2004)	<u>\$x1000</u>	¢/kWh
Water		4,511	0.09
Chemicals		4,563	0.09
Other Consumables Waste Disposal		0 3,076	0.00 0.06
	TOTAL CONSUMABLES(2004)	\$12,150	0.24
BY-PRODUCT CREDITS (2004)		(\$2,333)	(0.05)
FUEL COST(2004)		\$55,291	1.10
			2004 Costs
PRODUCTION COST SUMMARY		-	<u>¢/kWh</u>
Variable O & M			0.09
Consumables			0.24
By-product Credit	t		(0.05)
Fuel	I TOTAL PRODUCTION COST	-	<u> </u>
	nital)		3.24
2004 CARTERING CHARGES (Ca	FCR=0.138		J.24
2004 BUSBAR COST OF POWER	3		5.43

Exhibit 22 Case 2 - GE Energy IGCC Capital Investment & Operating Cost Requirement Summary (90% Capacity factor)

TITLE/DEFINITION			12/29/2005
Case: Plant Size: Fuel(type): Design/Construction: TPC(Plant Cost) Year: Capacity Factor:	Case 2 -GEE Radiant 500MW IGCC w/o CO2 634.83 (MW,net) Illinois #6 3.5 (years) 2004 85.0%	Heat Rate Fuel Cost: BookLife: TPI Year: CO2 Removed	8,699.0 Btu/kWh 1.27 (\$/MMBtu) 20 (years) 2010 (Jan.) (TPD)
CADITAL INVESTMENT		\$v1000	¢11/14
Process Capital & Facilities		787,129	1,239.9
Engineering(incl.C.M. H.O.& Fee)		78,713	124.0
Process Contingency		0	0.0
Project Contingency		106,504	107.8
	TOTAL PLANT COST(TPC) TOTAL CASH EXPENDED \$972,345 AFDC 72,727	972,345	1,531.7
	TOTAL PLANT INVESTMENT(TPI)	1,045,072	1,646.2
Poyalty Allowance		1 000	16
Preproduction Costs		26,602	41.9
Inventory Capital		7,773	12.2
Initial Catalyst & Chemicals(w/equ	ip.)		
Land Cost			0.9
	TOTAL CAPITAL REQUIREMENT(TCR)	\$1,081,002	1,702.8
OPERATING & MAINTENANCE (COSTS(2004)	\$x1000	\$/kW-vr
Operating Labor		5,466	8.6
Maintenance Labor		11,044	17.4
Maintenance Material		20,928	33.0
Administrative & Support Labor		4,127	6.5
	TOTAL OPERATION & MAINTENANCE(2004)	\$41,566	65.5
	FIXED 0 & M (2004)	\$35,331	55.7
	VARIABLE O & M (2004)	\$6,235	9.8
CONSUMABLE OPERATING CO	STS, LESS FUEL(2004)	\$x1000	¢/kWh
Water		4,260	0.09
Chemicals		4,315	0.09
Other Consumables		0	0.00
Waste Disposal		2,905	0.06
	TOTAL CONSUMABLES(2004)	\$11,481	0.24
BY-PRODUCT CREDITS (2004)		(\$2,204)	(0.05)
FUEL COST(2004)		\$52,220	1.10
			2004 Costs
PRODUCTION COST SUMMARY			<u>¢/kWh</u>
Fixed O & M			0.75
Variable O & M Concumebles			0.13
Bv-product Credit			(0.05)
Fuel			1.10
	TOTAL PRODUCTION COST	-	2.18
2004 CARRYING CHARGES (Ca	<u>pital)</u>		3.16
2004 BUSBAR COST OF POWER	<u> </u>		5.34
	_		

Exhibit 23 Case 2 - GE Energy IGCC Capital Investment & Operating Cost Requirement Summary (85% Capacity factor)

4 CASE 3 - PWR GASIFIER BASED IGCC PLANT DESCRIPTION AND RESULTS

Case 3 produces 613.7 MWe at 42.9% efficiency (7,957 BTU/kWh heat rate). The total plant cost excluding a spare gasification train is \$743MM, which equates to a LCOE at 85% CF of 44.6 mills/kWh.

A block flow diagram and associated stream tables for the Case 3 PWR gasifier-based IGCC plant in syngas quench/convective syngas cooler heat recovery mode are presented in Exhibit 24 and Exhibit 25, respectively. Performance, capital costs and operating costs are presented in Exhibit 26 through Exhibit 30.

4.1 Process Description

The Case 3 PWR IGCC plant consists of two compact gasifiers each fed with approximately 1,800 tpd of 95% oxygen produced via an on site Air Separation Unit (ASU) and approximately 2,500 tpd of Illinois #6 coal dried from 11.12% to 5% in a syngas/HRSG gas-fired coal dryer. The assumption that Illinois #6 coal has 5% inherent moisture has been made, but should be verified in the next stage of design. Each gasifier train in the PWR process requires approximately 140 tpd of pure nitrogen as coal transport gas as well as approximately 390 tpd of steam injection.

The PWR process claims an adiabatic flame temperature of ~2600°F, 1,000 psig operating pressure, and 100% carbon conversion. Approximately 490 tpd of slag (100% ash) is removed from the gasification reaction products (replicating the Case 4, Shell partial quench with recycle gas and convective cooling) followed with a candle filter and scrubber to separate the entrained slag. At this point, the syngas is heated to 400°F before entering a hydrolysis reactor, where >99% of the carbonyl sulfide is converted to hydrogen sulfide. The gas is cooled to ~100°F, is cleaned of ammonia and mercury prior to feeding the gas to the acid gas removal system.

A conventional Sulfinol-M process separates the syngas into an acid gas stream containing hydrogen sulfide and carbon dioxide and into a sweet gas stream containing the fuel gas to be combusted in the gas turbine. The acid gas stream is sent to a two bed Claus sulfur recovery plant with a tail gas clean up unit. Using approximately 113 tpd of 95% oxygen, the Claus process catalytically converts the gaseous sulfur compounds into elemental sulfur for collection and sale. A hydrogenation reactor converts the remaining gaseous sulfur dioxide into hydrogen sulfide, which may be separated from the tail gas in an MDEA tail gas treating unit. H₂S is then recycled back to the Claus plant thermal reaction zone to improve overall sulfur recovery.

The clean synthesis gas stream exits the Sulfinol-M unit at approximately 125° F, where it is humidified with hot water at 370° F. The humidifier accomplishes some reheating of the syngas while partially diluting the gas for NOx mitigation in the gas turbine combustors. After sulfur removal, the sweet fuel gas is also depressurized through an expander from 695 psia to 380 psia to generate ~11 MW_e of power.

Further reheating of the syngas, to 535°F, improves the gas turbine heat rate by reducing the amount of combustion energy used for heating the gas. In order to minimize NOx formation, the synthesis gas must be diluted to ~120 Btu/scf (LHV basis). Approximately 11,000 tpd of nitrogen diluent and 2,400 tpd of steam are added to accomplish the dilution. The resultant fuel

gas stream is combined with compressed and heated ambient air then combusted in two parallel General Electric 7FB model turbines.

The combustion products exiting the gas turbines are fed to a HRSG for heat recovery and additional power production before discharge to the atmosphere.

4.2 Modeling Assumptions for PWR Gasifier

Refer to Section 2.2 for a detailed discussion on the modeling assumptions used for PWR gasifier performance prediction in this study.

Exhibit 24 Case 3 - PWR Convective IGCC Plant Block Flow Diagram

	1	2	3	4	5	6 ^A	7 ^A	8	9	13	14	15
V-L Mole Fraction												
Ar	0.0094	0.0594	0.0322	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
CH ₄	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0019	0.0000	0.0016
CO	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.6076	0.0000	0.5072
CO ₂	0.0003	0.0138	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0121	0.0000	0.0101
COS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
H ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.3383	0.0000	0.2824
H ₂ O	0.0104	0.4392	0.0000	0.0000	0.0000	1.0000	1.0000	1.0000	0.0000	0.0009	1.0000	0.1660
H ₂ S	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
N ₂	0.7722	0.4876	0.0178	1.0000	0.0500	0.0000	0.0000	0.0000	0.0000	0.0393	0.0000	0.0328
NH ₃	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
O ₂	0.2077	0.0000	0.9500	0.0000	0.9500	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
SO ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	1.0000	1.0000
V-L Flowrate (lb _{mol} /hr)	30,775	1,024	293	31,919	9,257	2,586	1,088	3,587	0	35,292	7,468	42,279
V-L Flowrate (lb/hr)	887,988	25,135	9,431	894,172	294,374	46,545	19,580	64,622	0	683,915	134,420	809,784
Solids Flowrate (lb/hr)	0	0	0	0	0	372,029	372,029	0	40,588	0	0	0
Temperature (°F)	271	70	90	450	800	59	195	800	650	124	367	337
Pressure (psia)	225.0	16.4	125.0	375.0	1,191.2	14.7	550.0	1,200.0	975.0	768.0	890.0	700.0
Density (lb/ft ³)	0.83	0.12	0.682	1.08	2.76			1.60		2.38	51.18	1.58
Molecular Weight	28.85	24.55	32.18	28.01	31.80			18.02		19.38	18.02	19.15

Exhibit 25 Case 3 - PWR Convective IGCC Plant Stream Table

A - Solids flowrate includes coal; V-L flowrate includes water from coal (11.12 wt% moisture)

Note: Streams containing proprietary data are excluded from these stream tables.

	16	17	18	19	20	21	22	23	24	25	26	27
V-L Mole Fraction												
Ar	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0082	0.0094	0.0094	0.0071	0.0071
CH ₄	0.0016	0.0016	0.0016	0.0000	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
CO	0.5072	0.5072	0.5072	0.0042	0.0067	0.0000	0.0000	0.0050	0.0000	0.0000	0.0000	0.0000
CO ₂	0.0101	0.0101	0.0101	0.4531	0.0030	0.7115	0.0000	0.2823	0.0003	0.0003	0.0789	0.0789
COS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0000	0.0000	0.0000	0.0000
H ₂	0.2824	0.2824	0.2824	0.0024	0.0006	0.0003	0.0000	0.1305	0.0000	0.0000	0.0000	0.0000
H ₂ O	0.1660	0.1660	0.1660	0.0057	0.0000	0.0391	0.0000	0.4418	0.0104	0.0104	0.1160	0.1160
H ₂ S	0.0000	0.0000	0.0000	0.5344	0.0068	0.2490	0.0000	0.0251	0.0000	0.0000	0.0000	0.0000
N ₂	0.0328	0.0328	0.0328	0.0002	0.0004	0.0002	0.0000	0.1071	0.7722	0.7722	0.7017	0.7017
NH ₃	0.0000	0.0000	0.0000	0.0000	0.9824	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
O ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.2077	0.2077	0.0962	0.0962
SO ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	1.0000	1.0000	1.0000	1.0000
V-L Flowrate (lb _{mol} /hr)	42,279	42,279	42,279	607	271	124	0	1,282	222,574	12,413	278,728	278,728
V-L Flowrate (lb/hr)	809,784	809,784	809,784	23,294	4,680	5,024	0	32,015	6,422,210	358,167	7,967,270	7,967,270
Solids Flowrate (lb/hr)	0	0	0	0	0	0	10,414	0	0	0	0	0
Temperature (°F)	535	421	535	124	450	120	297	300	59	828	1,120	270
Pressure (psia)	695.0	380.0	375.0	375.0	364.5	28.0	22.6	15.5	14.7	282.2	14.8	14.7
Density (lb/ft ³)	1.25	0.77	0.67	2.31	0.67	0.18		0.05	0.08	0.59	0.03	0.05
Molecular Weight	19.15	19.15	19.15	38.39	17.30	40.51		24.97	28.85	28.85	28.58	28.58

Exhibit 25 (continued) Case 3 - PWR Convective IGCC Plant Stream Table

4.3 Equipment Descriptions

Coal Preparation and Feed Systems

The coal as received contains 11.12 percent moisture, and must be dried to 5 percent or less moisture. The coal is simultaneously crushed and dried using a combination of Claus tail gas and air. Crushed and dried coal is delivered to a surge hopper with an approximate 2-hour capacity.

The coal is drawn from the surge hoppers and fed through a developmental proprietary dry coal feed pump system, which uses nitrogen to convey the coal to the gasifiers.

Air Separation Unit

The air separation plant is designed to produce a nominal output of 3,700 tons/day of 95 percent pure O_2 from two ASU production trains. Most of the oxygen is used in the gasifier. A small portion, approximately 110 tons/day, is used in the Claus plant. The air compressor is powered by an electric motor. Approximately 11,000 tons/day of nitrogen are also recovered, compressed, and used as dilution in the gas turbine combustor.

Gasifier

The PWR gasifier uses a plug-flow entrained reactor and a multi-port injection nozzle to increase the kinetics and conversion of the gasification reaction. The PWR gasification process gasifies dried coal with steam and 95% (by volume) oxygen at ~2600°F and 1,000 psia. The PWR process claims a 100% carbon conversion and faster kinetics allowing for a more compact gasifier design. The prototype reactor designed to process 3,000 tons of dried coal per day is anticipated to be 39 inches in diameter and 15 feet in length. The amount of dried coal processed in this study is approximately 5,000 tons per day.

Syngas Cooling

High-temperature cooling heat recovery in each gasifier train is accomplished in two steps. The product gas from the gasifier is cooled to $\sim 1650^{\circ}$ F by adding cooled recycled fuel gas to lower the temperature below the ash melting point. Gas then goes through a convective raw gas cooler, which lowers the gas temperature from $\sim 1650^{\circ}$ F to 650° F, and produces high-pressure steam for use in the steam cycle. Boiler feedwater in the tube walls is saturated, and then steam and water are separated in a steam drum. Approximately 1.1 MMlb/hour of saturated steam at 1800 psia is produced. This steam then forms part of the general heat recovery system that provides steam to the steam turbine.

Particulate Removal

A candle filter is used to remove any particulate material exiting the secondary gasification zone. The filter is comprised of an array of ceramic candle elements in a pressure vessel. The filter is cleaned by periodically back pulsing it with fuel gas to remove the fines material.

Synthesis Gas Recycle Compressor

A fraction of the raw gas from the filter is recycled back to the gasifier as quench gas. A singlestage compressor is utilized to boost the pressure of a cooled fuel gas stream and provide quench gas to cool the gas stream from the gasifier.

Syngas Scrubbing

The "sour" gas leaving the particulate filter system consists mostly of hydrogen, CO₂, CO, water vapor, nitrogen, and smaller quantities of methane, carbonyl sulfide (COS), H₂S, and NH₃.

The sour gas is cooled to 95°F before H_2S is removed. The cooling is accomplished by several heat exchangers, where water in the syngas condenses; the condensate contains NH_3 and some of the H_2S and CO_2 . The sour condensate is sent to water treatment.

The raw synthesis gas exiting the ceramic particulate filter then enters the scrubber for particulate removal at 450°F. The quench scrubber washes the syngas in a counter-current flow in two packed beds. After leaving the scrubber at a temperature of 310° F, the gas has a residual soot content of less than 1 mg/m³. The quench scrubber removes essentially all traces of entrained particles, principally unconverted carbon, slag, and metals. The bottoms from the scrubber are sent to the slag removal and handling system for processing.

The syngas enters the syngas scrubber and is directed downwards by a dip tube into a water sump at the bottom of the syngas scrubber. Most of the solids are separated from the syngas at the bottom of the dip tube as the syngas goes upwards through the water. From the overhead of the syngas scrubber, the syngas enters the low-temperature gas cooling section for further cooling.

The slag handling system removes solids from the gasification process equipment. These solids normally consist of a small amount of unconverted carbon and essentially all of the ash contained in the feed coal. For this study, 100% carbon conversion was assumed. As a result, the "slag" is 100% ash. These solids are in the form of glass, which is non-leaching and fully encapsulates any metals.

COS Hydrolysis / Low Temperature Gas Cooling

 H_2S and COS are at significant concentrations, requiring removal for the power plant to achieve the low design level of SO₂ emissions. H_2S is removed in an acid gas removal process; however, because COS is not readily removable, it is first catalytically converted to H_2S in a COS hydrolysis unit.

Following the quench/scrubber system, the gas is reheated to 400°F and fed to the COS hydrolysis reactor. The COS is hydrolyzed with steam in the gas over a catalyst bed to H_2S , which is more easily removed by the AGR solvent. Any HCN in the syngas will also be reacted in the COS hydrolysis unit.

Before the raw fuel gas can be treated in the AGR process, it must be cooled to about 100° F. During this cooling through a series of heat exchangers, part of the water vapor condenses. This water, which contains some NH₃, is sent to the wastewater treatment section.

Mercury Removal

Mercury removal was based on packed beds of sulfur-impregnated carbon similar to what has been used at Eastman Chemical's gasification plant. Dual beds of sulfur-impregnated carbon with approximately a 20-second superficial gas residence time of should achieve >90 percent reduction of mercury in addition to removal of other volatile heavy metals such as arsenic.

Acid Gas Removal

The Sulfinol process, developed by Shell in the early 1960s, is a combination process that uses a mixture of amines and a physical solvent. The solvent consists of an aqueous amine and sulfolane. Sulfinol-D uses diisopropanolamine (DIPA), while Sulfinol-M uses MDEA. The mixed solvents allow for better solvent loadings at high acid gas partial pressures and higher solubility of COS and organic sulfur compounds than straight aqueous amines. Sulfinol-M was selected for this application.

The acid gas stream, consisting of hydrogen sulfide and carbon dioxide, is separated from the syngas by physical and chemical absorption in the Sulfinol solvent. The rich Sulfinol solvent is regenerated in a stripping column and is then recycled back to the absorber as lean solvent in a continuous loop. The stripping column feeds the acid gas taken from the Sulfinol solvent to the Claus plant for sulfur recovery.

Sour Water Stripper

The sour water stripper removes NH_3 , H_2S , and other impurities from the waste stream of the scrubber and water condensed in the low temperature gas cooling section. The sour gas stripper consists of a sour drum that accumulates sour water from the gas scrubber and condensate from syngas coolers. Sour water from the drum flows to the sour stripper, which consists of a packed column with a steam-heated reboiler. Sour gas is stripped from the liquid and sent to the sulfur recovery unit. Remaining water is sent to wastewater treatment.

Sulfur Recovery System

The sulfur recovery unit is a Claus bypass type sulfur recovery unit utilizing oxygen instead of air followed by a SCOT tail gas unit. The Claus plant produces molten sulfur by reacting approximately one third of the H_2S in the feed to SO_2 , then reacting the H_2S and SO_2 to sulfur and water. The combination of Claus technology and SCOT tail gas technology will result in a sulfur recovery exceeding 99 percent of that fed to the Claus plant and a vent gas of less than 2 ppmv of SO_2 .

Utilizing oxygen instead of air in the Claus plant reduces the overall cost of the sulfur recovery plant. The sulfur plant will produce approximately 112 long tons of elemental sulfur per day. Feed for this case consists of acid gas from both acid gas cleanup units and a vent stream from the sour water stripper in the gasifier section. Vent gas from the tail gas treatment unit is vented to the coal dryer, contributing to total plant sulfur emissions of less than 0.033 lb/MMBtu, meeting air quality standards.

Syngas Expander

After sulfur removal, the sweet fuel gas is saturated with condensate, reheated, and depressurized through an expander from 695 psia to 380 psia, which is near the pressure required by the gas turbine. The expander generates $\sim 11 \text{ MW}_e$ of power.

Gas Turbine Generator

Both of the combustion turbine generators are General Electric 7FB model turbines modified for syngas firing. The maximum output of each is expected to be 232 MW, based on the rotor torque limit. Each machine is an axial flow, single spool, constant speed unit, equipped with variable inlet guide vanes and syngas version of diffusion-flame combustor with nitrogen diluent injection. The turbine exhaust gases are conveyed through a HRSG to recover the large quantities of thermal energy that remain.

The gas turbine generator selected for this application is based on a natural gas fired 7FB machine. In this service, with syngas from an IGCC plant, the machine requires some modifications to the burner and turbine nozzles in order to properly combust the medium-Btu gas and expand the combustion products in the turbine section of the machine. A reduction in rotor inlet temperature of about 50°F is expected, relative to a production model 7FB machine firing natural gas. This temperature reduction may be necessary to not exceed design basis gas path temperatures throughout the expander. If the first-stage rotor inlet temperature were maintained at the design value, gas path temperatures downstream of the inlet to the first (HP) turbine stage may increase, relative to natural-gas-fired temperatures, due to gas property changes.

The syngas fired 7FB gas turbine is a developmental machine that GE expects to have available in the 2010 time frame for commercial applications.

Heat Recovery Steam Generator / Steam Turbine

The HRSG supplies steam to a steam turbine generator which is a tandem compound, two-flow exhaust, single reheat, condensing, GE model D-11, or equal. The steam turbine consists of an HP section, an IP section, and one double-flow LP section, all connected to the generator by a common shaft. The HP and IP sections are contained in a single-span, opposed-flow casing, with the double-flow LP section in a separate casing. The overall power output from the steam turbine is 240 MWe.

4.4 Performance Results

For Case 3, the combustion turbines are two General Electric 7FB model turbines in parallel, each producing 232 MWe for a total of 464 MWe. The steam turbine produces 240 MWe, and the sweet gas expander produces 11 MWe. Total auxiliary power required is 101 MWe, yielding a net plant power output of 614 MWe.

Overall plant efficiency (HHV) is 42.9%, with a heat rate of 7,957 Btu/kWh.

The performance results are summarized in Exhibit 26.

POWER SUMMARY – 100 Percent Load								
(Gross Power at Generator Terminals, kWe								
Plant Output								
Gas Turbine Power	464,000	kW _e						
Sweet Gas Expander Gross Power	10,920	kW _e						
Steam Turbine Power	239,870	kW _e						
Total	714,790	kW _e						
Auxiliary Load								
Coal Handling	540	kW _e						
Coal Milling	1,090	kW _e						
Dry Coal Pump	1,500	kW _e						
Slag Handling	330	kW _e						
Air Separation Unit Auxiliaries	1,000	kW _e						
ASU Main Air Compressor	38,300	kW _e						
Oxygen Compressor	9,470	kW _e						
Nitrogen Compressor	26,150	kW _e						
Syngas Recycle Compressor	1,870	kW _e						
Boiler Feedwater Pump	5,590	kW _e						
Condensate Pump	230	kW _e						
Circulating Water Pump	4,780	kW _e						
Cooling Tower Fans	1,080	kW _e						
Scrubber Pumps	300	kW _e						
Sulfinol Unit Auxiliaries	500	kW _e						
Gas Turbine Auxiliaries	2,000	kW _e						
Steam Turbine Auxiliaries	1,000	kW _e						
Claus Plant/TGTU Auxiliaries	200	kW _e						
Miscellaneous Balance-of-Plant	3,000	kW _e						
Transformer Losses	2,200	kW _e						
Total	101,130	kW _e						
Plant Performance								
Net Plant Power	613,660	kW _e						
Net Plant Efficiency (HHV)	42.9%							
Net Plant Heat Rate (HHV)	7,957	Btu/kWh						
Coal Feed Flowrate	418,574	lb/hr						
Thermal Input ¹	1,431,091	kWt						
Condenser Duty	1,150	MMBtu/hr						

Exhibit 26 Case 3 - PWR Convective IGCC Plant Performance Summary

1 - HHV of Illinois #6 11.12% Moisture Coal is 11,666 Btu/lb

4.5 Economic Results

The capital and operating costs estimate results are shown in Exhibit 27 through Exhibit 30. The Total Plant Cost is estimated to be 1,211 \$/kW. At a 94%, 90% and 85% capacity factor, the Levelized Cost of Electricity is 41.5, 42.8 and 44.6 mills/kWh, respectively.

	Client:	DEPARTMEN		(GY				F	Report Date:	17-Jan-06	
	Project:	Rocketdyne 16									
	Case.	Case 3 Pock	tduna/Shall	1600							
	Plant Size:	613.66	MW,net	Estimat	e Type:	Conceptual	Cost Base	(December)	2005	; \$x1000	
Acct		Equipment	Material	La	bor	Bare Erected	Eng'g CM	Conting	encies	TOT. PLAN	тсоѕт
No.	Item/Description	Cost	Cost	Direct	Indirect	Cost \$	H.O.& Fee	Process	Project	\$	\$/kW
1	COAL & SORBENT HANDLING	9,776	1,817	7,828	548	19,969	1,997		4,393	\$26,358	\$43
2	COAL & SORBENT PREP & FEED	12,900		9,968	137	28,986	2,899		6,377	\$38,261	\$62
3	FEEDWATER & MISC. BOP SYSTEMS	7,704		7,822	548	22,450	2,245		5,727	\$30,422	\$50
4 4.1 4.2 4.3 4.4-4.9	GASIFIER & ACCESSORIES PWR Gasification System Syngas Cooler w/Gasifier ASU/Oxidant Compression Other Gasification Equipment	w/ 4.2 52,462 61,415 w/ 4.2	w/ 4.2 13,198 w/ 4.2	24,360 w/equip.	1,706	91,726 61,415	9,173 6,141		12,079 3,378	\$112,977 \$70,934	\$184 \$116
	Subtotal 4	113,877	13,198	24,360	1,706	153,140	15,314		15,456	\$183,911	\$300
5	GAS & CLEANUP AND PIPING	19,843	3,819	17,412	1,219	42,293	4,229		8,044	\$54,566	\$89
6 6.1 6.2-6.9	COMBUSTION TURBINE/ACCESSORIES Combustion Turbine Generator Combustion Turbine Accessories Subtotal 6	115,259 3,327 118,586	555 555	4,153 1,272 5,425	291 89 380	119,703 5,243 124,946	11,970 524 12,495		13,167 846 14,013	\$144,840 \$6,613 \$151,453	\$236 \$11 \$247
7 7.1 7.2-7.9	HRSG, DUCTING & STACK Heat Recover Stream Generator SCR System, Ductwork and Stack Subtotal 7	30,540 2,736 33,276	2,782 2,782	4,064 3,264 7,328	284 228 513	34,888 9,010 43,899	3,489 901 4,390		3,838 1,682 5,519	\$42,215 \$11,593 \$53,808	\$69 \$19 \$88
8 8.1 8.2-8.9	STEAM TURBINE GENERATOR Steam TG & Accessories Turbine Plant Auxiliaries & Steam Piping Subtotal 8	28,015 6,096 34,111	560 560	2,958 4,253 7,211	207 298 505	31,180 11,207 42,387	3,118 1,121 4,239		3,430 2,135 5,565	\$37,728 \$14,462 \$52,190	\$61 \$24 \$85
9	COOLING WATER SYSTEM	7,542	4,696	6,654	466	19,358	1,936		3,906	\$25,200	\$41
10	ASH/SPENT SORBENT HANDLING SYS	11,011	6,163	10,473	733	28,380	2,838		3,359	\$34,577	\$56
11	ACCESSORY ELECTRIC PLANT	13,368	5,955	15,451	1,082	35,856	3,586		6,673	\$46,114	\$75
12	INSTRUMENTATION & CONTROL	5,879		4,531	317	11,617	1,162		1,809	\$14,587	\$24
13	IMPROVEMENTS TO SITE	2,907	1,713	6,487	454	11,561	1,156		3,815	\$16,532	\$27
14	BUILDINGS & STRUCTURES		4,835	5,851	450	11,136	1,114		3,063	\$15,313	\$25
	TOTAL COST	\$390,780	\$59,341	\$136,801	\$9,056	\$595,977	\$59,598		\$87,719	\$743,294	\$1,211

Exhibit 27 Case 3 - PWR Convective IGCC Total Plant Capital Costs

TITLE/DEFINITION	Case 3 -Bocketdyne/Shell IGCC		1/20/2006
Plant Size: Fuel(type):	613.66 (MW,net) Illinois #6	Heat Rate Fuel Cost:	7,957 Btu/kWh 1.27 (\$/MMBtu)
TPC(Plant Cost) Year:	3.5 (years) 2004	TPI Year:	20 (years) 2004 (Jan.)
Capacity Factor:	94.0%	CO2 Removed	(TPD)
CAPITAL INVESTMENT Process Capital & Facilities Engineering(incl.C.M.,H.O.& Fee)		<u>\$x1000</u> 595,977 59,598	\$/⊮₩ 971.2 97.1
Process Contingency Project Contingency		0 87,719	0.0 142.9
	TOTAL PLANT COST(TPC) TOTAL CASH EXPENDED \$743,294 AFDC 55,595	743,294	1,211.2
	TOTAL PLANT INVESTMENT(TPI)	798,888	1,301.8
Royalty Allowance Preproduction Costs Inventory Capital Initial Catalyst & Chemicals(w/equ	io.)	1,000 20,985 7,395	1.6 34.2 12.1
Land Cost	с. 1 .	555	0.9
	TOTAL CAPITAL REQUIREMENT(TCR)	\$828,823	1,350.6
OPERATING & MAINTENANCE Operating Labor Maintenance Labor Maintenance Material Administrative & Support Labor	<u>E COSTS(2004)</u>	\$x1000 5,466 8,442 15,998 4,127	\$/k₩-yr 8.9 13.8 26.1 6.7
	TOTAL OPERATION & MAINTENANCE(2004)	\$34,034	55.5
	FIXED O & M (2004)	\$31,992	52.1
	VARIABLE O & M (2004)	\$2,042	3.3
CONSUMABLE OPERATING C Water Chemicals Other Consumables Waste Disposal	COSTS, LESS FUEL(2004)	\$x1000 4,711 4,546 0 3,209	<u>¢/kWh</u> 0.09 0.09 0.00 0.06
	TOTAL CONSUMABLES(2004)	\$12,466	0.25
BY-PRODUCT CREDITS (2004	4)	(\$2,437)	(0.05)
FUEL COST(2004)		\$51,063	1.01
PRODUCTION COST SUMMAI Fixed O & M Variable O & M Consumables By-product Credit Fuel	TOTAL PRODUCTION COST	20	04 Costs ¢/kWh 0.63 0.04 0.25 (0.05) 1.01 1.88
2004 CARRYING CHARGES (Capital)		2.26
2004 BUSBAR COST OF POW	<u>'ER</u>		4.15

Exhibit 28 Case 3 - PWR Convective IGCC Capital Investment & Operating Cost Requirement Summary (94% Capacity factor)

TITLE/DEFINITION Case:	Case 3 -Rocketdyne/Shell IGCC	Heat Data	1/20/2006
Fuel(type):	Illinois #6	Fuel Cost:	1.27 (\$/MMBtu)
Design/Construction: TPC(Plant Cost) Year:	3.5 (years) 2004	BookLife: TPI Year:	20 (years) 2004 (Jan.)
Capacity Factor:	90.0%	CO2 Removed	(TPD)
CAPITAL INVESTMENT		<u>\$x1000</u>	<u>\$/kW</u>
Process Capital & Facilities Engineering(incl.C.M.,H.O.& Fee)		595,977 59,598	971.2 97.1
Process Contingency		0	0.0
Project Contingency		87,719	142.9
	TOTAL PLANT COST(TPC) TOTAL CASH EXPENDED \$743,294 AFDC 55,595	743,294	1,211.2
	TOTAL PLANT INVESTMENT(TPI)	798,888	1,301.8
Royalty Allowance		1,000	1.6
Preproduction Costs		20,940	34.1 11 7
Initial Catalyst & Chemicals(w/equ	ip.)	7,170	11.7
Land Cost		555	0.9
	TOTAL CAPITAL REQUIREMENT(TCR)	\$828,553	1,350.2
OPERATING & MAINTENANC	<u> = COSTS(2004)</u>	<u>\$x1000</u>	<u>\$/k₩-yr</u>
Operating Labor		5,466	8.9
Maintenance Labor		8,442 15 998	13.8
Administrative & Support Labor		4,127	6.7
	TOTAL OPERATION & MAINTENANCE(2004)	\$34,034	55.5
	FIXED O & M (2004)	\$30,631	49.9
	VARIABLE O & M (2004)	\$3,403	5.5
CONSUMABLE OPERATING C	COSTS, LESS FUEL(2004)	<u>\$x1000</u>	<u>¢/kWh</u>
Water		4,511	0.09
Other Consumables		4,362	0.09
Waste Disposal		3,073	0.06
	TOTAL CONSUMABLES(2004)	\$11,936	0.25
BY-PRODUCT CREDITS (2004	4)	(\$2,333)	(0.05)
FUEL COST(2004)		\$48,890	1.01
			2004 Costs
PRODUCTION COST SUMMAI	<u>RY</u>		<u>¢/kWh</u>
Fixed O & M			0.63
Variable O & M Consumables			0.07
By-product Credit			(0.05)
Fuel			1.01
	TOTAL PRODUCTION COST		1.91
2004 CARRYING CHARGES (<u>Capital)</u> FCR=0.138		2.36
2004 BUSBAR COST OF POW	ER		4.28

Exhibit 29 Case 3 - PWR Convective IGCC Capital Investment & Operating Cost Requirement Summary (90% Capacity factor)

			1/20/2006
Case: Plant Size: Fuel(type): Design/Construction: TPC(Plant Cost) Year: Capacity Factor:	Case 3 -Rocketdyne/Shell IGCC 613.66 (MW,net) Illinois #6 3.5 (years) 2004 85.0%	Heat Rate Fuel Cost: BookLife: TPI Year: CO2 Removed	7,957 Btu/kWh 1.27 (\$/MMBtu) 20 (years) 2004 (Jan.) (TPD)
		\$~1000	\$11/36/
Process Capital & Facilities		<u>\$\$1000</u> 595,977	971.2
Engineering(incl.C.M.,H.O.& Fee) Process Contingency		59,598 0	97.1 0.0
Project Contingency		87,719	142.9
	TOTAL PLANT COST(TPC) TOTAL CASH EXPENDED \$743,294 AEDC 55,595	743,294	1,211.2
	TOTAL PLANT INVESTMENT(TPI)	798,888	1,301.8
Royalty Allowance		1,000	1.6
Preproduction Costs		20,885 6,888	34.0 11.2
Initial Catalyst & Chemicals(w/equ	ip.)	0,000	11.2
Land Cost		555	0.9
	TOTAL CAPITAL REQUIREMENT(TCR)	\$828,217	1,349.6
OPERATING & MAINTENANCE	COSTS(2004)	<u>\$x1000</u>	\$/kW-yr
Operating Labor Maintenance Labor		5,466 8,442	8.9 13.8
Maintenance Material		15,998	26.1
Administrative & Support Labor		4,127	6.7
	TOTAL OPERATION & MAINTENANCE(2004)	\$34,034	55.5
	FIXED 0 & M (2004)	\$28,929	47.1
	VARIABLE O & M (2004)	\$5,105	8.3
CONSUMABLE OPERATING CO	STS, LESS FUEL(2004)	<u>\$x1000</u>	<u>¢/kWh</u>
Water		4,260	0.09
Chemicals Other Consumables		4,111 0	0.09
Waste Disposal		2,902	0.06
	TOTAL CONSUMABLES(2004)	\$11,273	0.25
BY-PRODUCT CREDITS (2004)		(\$2,204)	(0.05)
FUEL COST(2004)		\$46,174	1.01
		2	004 Costs
Fixed 0 & M			<u>¢/kWh</u> 0.63
Variable O & M			0.11
Consumables Bv-product Credit			0.25 (0.05)
Fuel		_	1.01
	I O I AL PRODUCTION COST		1.95
2004 CARRYING CHARGES (Ca	<u>pital)</u> FCR=0.138		2.50
2004 BUSBAR COST OF POWER	3		4.46

Exhibit 30 Case 3 - PWR Convective IGCC Capital Investment & Operating Cost Requirement Summary (85% Capacity factor)

5 CASE 4 - SHELL GASIFIER BASED IGCC PLANT DESCRIPTION AND RESULTS

Case 4 produces 624.6 MWe at 42.0% efficiency (8,130 BTU/kWh heat rate). The plant costs \$949MM and, at 85% CF, provides electricity at 52.8 mills/kWh. A plant with a redundant gasifier train costs \$1,045MM and at 90% CF, provides electricity at 54.2 mills/kWh, and at 94% CF, provides electricity at 52.5 mills/kWh

A block flow diagram and associated stream tables for the Case 4 Shell gasifier-based IGCC plant in syngas quench/convective syngas cooling heat recovery mode are presented in Exhibit 31 and Exhibit 32, respectively. Performance, capital costs and operating costs are presented in Exhibit 33 through Exhibit 38.

5.1 Process Description

Case 4 is similar to Case 3 with the following exception:

• The gasifier used in Case 4 is the Shell Gasifier with an operating pressure of 465 psia.

This IGCC plant design is based on the Shell Global Solutions gasification technology, which utilizes a pressurized entrained-flow dry-feed gasifier to meet the syngas fuel requirements for two General Electric 7FB combustion turbines. The ASU supplies 95 percent pure oxygen to the gasifier.

The pressurized entrained-flow Shell gasifier uses a dry-coal feed and oxygen to produce a medium heating value fuel gas. The syngas produced in the gasifier at about 2700°F is quenched to around 1650°F by cooled recycled syngas. The syngas passes through a convective cooler and leaves near 650°F. High-pressure saturated steam is generated in the syngas cooler and is joined with the main steam supply.

Raw gas leaving the syngas cooler is cleaned of particulate matter and passes through a COS hydrolysis reactor before entering a Sulfinol-M acid gas removal process. Elemental sulfur is produced as a salable byproduct. The clean gas exiting the AGR system is conveyed to the combustion turbines where it serves as fuel for the combustion turbine/HRSG/steam turbine power conversion system. The exhaust gas from the combustion turbine and HRSG is released to the atmosphere via a conventional stack.

This plant utilizes a combined cycle for combustion of the medium-Btu gas from the gasifier to generate electric power. A Brayton cycle using air and combustion products as working fluid is used in conjunction with a conventional subcritical steam Rankine cycle. The two cycles are coupled by generation of steam in the HRSG, by feedwater heating in the HRSG, and by heat recovery from the IGCC process (gas cooling modules).

The hot combustion gases are conveyed to the inlet of the turbine section, where they enter and expand through the turbine to produce power to drive the compressor and electric generator. The turbine exhaust gases are conveyed through a HRSG to recover the large quantities of thermal energy that remain. The HRSG exhausts to a separate stack.

The steam cycle is based on maximizing heat recovery from the gas turbine exhaust gas, as well as utilizing steam generation opportunities in the gasifier process. As the turbine exhaust gas passes through the HRSG, it progressively transfers heat for reheating steam (cold reheat to hot

reheat), superheating main steam, and generating main steam in an HP drum. The HRSG also generates and superheats steam from an IP drum (as reheat, and for use in the integral deaerator), and heats feedwater.

The steam turbine selected to match this cycle is a two-casing, reheat, double-flow (exhaust) machine, exhausting downward to the condenser. The HP and IP turbine sections are contained in one casing, with the LP section in a second casing.

Exhibit 31 Case 4 - Shell Gasifier-Based IGCC Plant Block Flow Diagram

	1	2	3	4	5	6	7	8 ^A	9 ^A	10
V-L Mole Fraction										
Ar	0.0094	0.0145	0.0360	0.0000	0.0360	0.0000	0.0105	0.0000	0.0000	0.0000
CH ₄	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0000	0.0000	0.0000
CO	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.6152	0.0000	0.0000	0.0000
CO ₂	0.0003	0.0046	0.0000	0.0000	0.0000	0.0000	0.0006	0.0000	0.0000	0.0000
COS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
H ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.3140	0.0000	0.0000	0.0000
H ₂ O	0.0104	0.1413	0.0000	0.0000	0.0000	1.0000	0.0020	1.0000	1.0000	0.0000
H ₂ S	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
N ₂	0.7722	0.7247	0.0140	1.0000	0.0140	0.0000	0.0576	0.0000	0.0000	0.0000
NH ₃	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
O ₂	0.2077	0.1149	0.9500	0.0000	0.9500	0.0000	0.0000	0.0000	0.0000	0.0000
SO ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000
V-L Flowrate (lb _{mol} /hr)	40,000	3,717	181	37,283	10,461	2,331	450	2,688	1,131	0
V-L Flowrate (lb/hr)	1,154,180	101,484	5,840	1,044,430	337,137	41,989	8,988	48,390	20,356	0
Solids Flowrate (lb/hr)	0	0	0	0	0	0	0	386,771	386,771	44,394
Temperature (°F)	255	63	90	448	208	450	124	300	1,650	448
Pressure (psia)	190.0	16.4	30.0	300.0	650.0	500.0	357.0	464.4	464.4	430.9
Density (lb/ft ³)	0.715	0.091	0.164	0.863	2.925	47.395	1.138			
Molecular Weight	28.854	27.305	32.229	28.013	32.229	18.015	19.962			

Exhibit 32 Case 4 - Shell Gasifier-Based IGCC Plant Stream Table

A - Solids flowrate includes dry coal; V-L flowrate includes slurry water and water from coal

Note: Streams containing proprietary data are excluded from these stream tables.

	16	17	18	19	20	21	22	23	24
V-L Mole Fraction									
Ar	0.0105	0.0086	0.0003	0.0000	0.0038	0.0094	0.0094	0.0086	0.0086
CH ₄	0.0001	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
CO	0.6152	0.5051	0.0113	0.0000	0.0549	0.0000	0.0000	0.0000	0.0000
CO ₂	0.0006	0.0005	0.6300	0.0000	0.5500	0.0003	0.0003	0.0760	0.0760
COS	0.0000	0.0000	0.0000	0.0000	0.0002	0.0000	0.0000	0.0000	0.0000
H ₂	0.3140	0.2577	0.0063	0.0000	0.0122	0.0000	0.0000	0.0000	0.0000
H ₂ O	0.0020	0.1807	0.0062	0.0000	0.2982	0.0104	0.0104	0.0738	0.0738
H ₂ S	0.0000	0.0000	0.2617	0.0000	0.0017	0.0000	0.0000	0.0000	0.0000
N ₂	0.0576	0.0473	0.0842	0.0000	0.0762	0.7722	0.7722	0.7372	0.7372
NH ₃	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
O ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.2077	0.2077	0.1043	0.1043
SO ₂	0.0000	0.0000	0.0000	0.0000	0.0028	0.0000	0.0000	0.0000	0.0000
Total	1.0000	1.0000	1.0000	0.0000	1.0000	1.0000	1.0000	1.0000	1.0000
V-L Flowrate (lb _{mol} /hr)	35,402	43,125	1,290	0	1,847	235,560	11,778	287,742	287,742
V-L Flowrate (lb/hr)	706,714	845,840	50,914	0	62,205	6,796,930	339,846	8,347,350	8,347,350
Solids Flowrate (lb/hr)	0	0	0	10,891	0	0	0	0	0
Temperature (°F)	124	530	124	344	280	59	724	1,120	270
Pressure (psia)	357.0	345.0	60.0	23.6	23.6	14.7	225.6	14.8	14.7
Density (lb/ft ³)	1.138	0.637	0.378		0.101	0.076	0.512	0.025	0.056
Molecular Weight	19.962	19.614	39.458		33.679	28.854	28.854	29.010	29.010

Exhibit 32 (continued) Case 4 - Shell Gasifier-Based IGCC Plant Stream Table

5.2 Equipment Descriptions

Coal Preparation and Feed Systems

The coal as received contains 11.12 percent moisture, and must be dried to 5 percent or less moisture. The coal is simultaneously crushed and dried. Crushed and dried coal is delivered to a surge hopper with an approximate 2-hour capacity.

The coal is drawn from the surge hoppers and fed through a pressurization lock hopper system to a dense phase pneumatic conveyor, which uses nitrogen to convey the coal to the gasifiers.

Air Separation Unit

The air separation plant is designed to produce a nominal output of 4,100 tpd of 95 percent pure O_2 from two ASU production trains. Most of the oxygen is used in the gasifier. A small portion, approximately 70 tpd, is used in the Claus plant. The air compressor is powered by an electric motor. Approximately 12,500 tpd of nitrogen are also recovered, compressed, and used as dilution in the gas turbine combustor.

Gasifier

There are two Shell entrained-flow gasifiers, operating at 465 psia each processing 2,440 tons per day of dry coal. Sized coal is stored in surge hoppers, which serve as a reserve of raw material for the pressurization lock hoppers below. Coal is pressurized and fluidized with nitrogen, and transported to horizontally opposed burners on each gasifier along with 240 tpd steam, 2,020 tpd oxygen and recirculated solids from the raw gas filter. Gas exits the gasifier at 1650°F, and contains elutriated particulate matter. The gas passes through the raw gas cooler and then through the raw gas filter in which a majority of the fine particles are removed and are returned to the gasifier with the coal fuel.

Fines produced by the gasification system are recirculated to extinction. The ash that is not carried out with the gas forms slag and runs down the interior walls, exiting the gasifier in liquid form. The slag is solidified in a quench tank for disposal. A pressure reduction system is used to reduce the pressure of the solids from 465 to 15 psia.

Syngas Cooling

High-temperature cooling heat recovery in each gasifier train is accomplished in two steps. The product gas from the gasifier is cooled to 1650°F by adding cooled recycled fuel gas to lower the temperature below the ash melting point. Gas then goes through a raw gas cooler, which lowers the gas temperature from 1650°F to 650°F, and produces high-pressure steam for use in the steam cycle.

Hot raw gas after quenching from the gasification zone exits the gasifier and is cooled to 650°F in a convective cooler. The waste heat from this cooling is used to generate high-pressure steam. Boiler feedwater in the tube walls is saturated, and then steam and water are separated in a steam drum. Approximately 830,000 lb/hour of saturated steam at 1800 psia is produced. This steam then forms part of the general heat recovery system that provides steam to the steam turbine.

Particulate Removal

A candle filter is used to remove any particulate material exiting the secondary gasification zone. This material, char and fly ash, is recycled back to the gasifier. The filter is comprised of an array of ceramic candle elements in a pressure vessel. The filter is cleaned by periodically back pulsing it with fuel gas to remove the fines material. Raw gas exits the candle filter at 448°F and 431 psia.

Syngas Recycle Compressor

A fraction of the raw gas from the filter is recycled back to the gasifier as quench gas. A singlestage compressor is utilized to boost the pressure of a cooled fuel gas stream from 431 psia to 470 psia to provide quench gas to cool the gas stream from the gasifier.

Syngas Scrubbing

The "sour" gas leaving the particulate filter system consists mostly of hydrogen, CO₂, CO, water vapor, nitrogen, and smaller quantities of methane, carbonyl sulfide (COS), H₂S, and NH₃.

The sour gas is cooled to 95°F before H_2S is removed. The cooling is accomplished by several heat exchangers, where water in the syngas condenses; the condensate contains NH_3 and some of the H_2S and CO_2 . The sour condensate is sent to water treatment.

The raw synthesis gas exiting the ceramic particulate filter at 448°F then enters the scrubber for particulate removal. The quench scrubber washes the syngas in a counter-current flow in two packed beds. After leaving the scrubber at a temperature of 230°F, the gas has a residual soot content of less than 1 mg/m³. The quench scrubber removes essentially all traces of entrained particles, principally unconverted carbon, slag, and metals. The bottoms from the scrubber are sent to the slag removal and handling system for processing.

COS Hydrolysis

Refer to Case 3 in section 4.3 for a description of the COS Hydrolysis system used in Case 4, since they are similar.

Mercury Removal

Refer to Case 3 in section 4.3 for a description of the Mercury Removal system used in Case 4, since they are similar.

Acid Gas Removal

Refer to Case 3 in section 4.3 for a description of the Acid Gas Removal system used in Case 4, since they are similar.

Sour Water Stripper

Refer to Case 3 in section 4.3 for a description of the Acid Gas Removal system used in Case 4, since they are similar.

Sulfur Recovery System

The sulfur recovery unit is a Claus bypass type sulfur recovery unit utilizing oxygen instead of air followed by a SCOT tail gas unit. The Claus plant produces molten sulfur by reacting approximately one third of the H_2S in the feed to SO_2 , then reacting the H_2S and SO_2 to sulfur and water. The combination of Claus technology and SCOT tail gas technology will result in an overall sulfur recovery exceeding 99 percent and a vent gas of less than 2 ppmv of SO_2 .

Utilizing oxygen instead of air in the Claus plant reduces the overall cost of the sulfur recovery plant. The sulfur plant will produce approximately 117 long tons of elemental sulfur per day. Feed for this case consists of acid gas from both acid gas cleanup units and a vent stream from the sour water stripper in the gasifier section. Vent gas from the tail gas treatment unit is vented to the coal dryer.

Gas Turbine Generator

Refer to Case 3 in section 4.3 for a description of the Gas Turbine Generator used in Case 4, since they are similar.

Heat Recovery Steam Generator / Steam Turbine

Refer to Case 3 in section 4.3 for a description of the HRSG and Steam Turbine used in Case 4, since they are similar. The overall power output from the steam turbine is 270.4 MWe.

5.3 Performance Results

For Case 4, the combustion turbines are two General Electric Model 7FB turbines in parallel, each producing 232 MWe for a total of 464 MWe. The steam turbine produces 270 MWe. Total auxiliary power required is 110 MWe, yielding a net plant power output of 625 MWe.

Overall plant efficiency (HHV) is 42.0%, with a heat rate of 8,130 Btu/kWh.

The performance results are summarized in Exhibit 33.

POWER SUMMARY – 100 Percent Load		
(Gross Power at Generator Terminals, k)	Ne	
Plant Output		
Gas Turbine Power	464,000	kW _e
Steam Turbine Power	270,370	kW _e
Total	734,370	kW _e
Auxiliary Load		
Coal Handling	80	kW _e
Coal Milling	2,030	kW _e
Slag Handling	520	kW _e
Air Separation Unit Auxiliaries	1,000	kW _e
ASU Main Air Compressor	46,460	kW _e
Oxygen Compressor	7,450	kW _e
Nitrogen Compressor	29,390	kW _e
Plant Tail Gas Recycle Compressor	2,240	kW _e
Incinerator Air Blower	110	kW _e
Boiler Feedwater Pump	4,080	kW _e
Condensate Pump	250	kW _e
Circulating Water Pump	5,810	kW _e
Cooling Tower Fans	1,310	kW _e
Scrubber Pumps	300	kW _e
Sulfinol Unit Auxiliaries	340	kW _e
Gas Turbine Auxiliaries	2,000	kW _e
Steam Turbine Auxiliaries	1,000	kW _e
Claus Plant/TGTU Auxiliaries	240	kW _e
Miscellaneous Balance-of-Plant	3,000	kW _e
Transformer Losses	2,140	kW _e
Total	109,750	kW _e
Plant Performance		
Net Auxiliary Load	109,750	kW _e
Net Plant Power	624,620	kW _e
Net Plant Efficiency (HHV)	42.0%	
Net Plant Heat Rate (HHV)	8,130	Btu/kWh
Coal Feed Flowrate	435,161	lb/hr
Thermal Input ¹	1,487,801	kWt
Condenser Duty	1,399	MMBtu/hr

Exhibit 33
Case 4 - Shell Gasifier-Based IGCC Plant Performance Summary

1 - HHV of Illinois #6 11.12% Moisture Coal is 11,666 Btu/lb Note: GT air extraction yields 23% air integration

5.4 Economic Results

The capital and operating costs estimate results for Case 4 are shown in Exhibit 34 through Exhibit 38. The Total Plant Cost with a dual gasifier train is estimated to be 1,519 \$/kW and 1,674 \$/kW for a plant with a redundant three gasifier train. At 94% and 90% capacity factors, the Levelized Cost of Electricity for the redundant train arrangements are 52.5 and 54.2 mills/kWh, respectively. At 85% capacity factor, the LCOE for the dual train arrangement is 52.8 mills/kWh.

	Client:	DEPARTMEN	T OF ENER	GY					Report Date:	20-Jan-06	
	Project:	Rocketdyne 16	CC Power I	Plant							
					TOTAL PLAI		MARY				
	Case:	Case 4 Shell I	JCC for Pov	ver Production		Concentral	.		2004		
A t		024.02	IVIVV, riet	Estimat	e Type:	Conceptual	Cost Base	(December)	2004	; \$X1000	TOOOT
No	Item/Description	Equipment	Cost	Direct	lndirect	Bare Erected	Eng g CM H O & Fee	Process	Project	101. PLAN \$	\$/kW
1		9 964	1 901	8 3 1 6	582	20 763	2.076	1100000	3 083	\$25,922	\$42
2		78 700	5 833	13,931	975	99 440	9.944		14 767	\$124 151	\$199
3	EFEDWATER & MISC BOP SYSTEMS	6 941	6 256	7 369	516	21.082	2 108		3 131	\$26,321	\$42
		0,041	0,200	7,000	010	21,002	2,100		0,101	\$20,021	Ψ ⁻¹ Ζ
4.1	Gasifier, Syngas Cooler & Auxiliaries (Shell)	83,340		41,009	2,871	127,220	12,722		18,892	\$158,834	\$254
4.2	Syngas Cooling	w/4.1		w/4.1						,	
4.3	ASU/Oxidant Compression	64,216		w/Equip		64,216	6,422		9,536	\$80,174	\$128
4.4-4.9	Other Gasification Equipment	35,531	5,502	10,974	/68	52,776	5,278		7,837	\$65,891	\$105
_	Sublotal 4	183,087	5,502	51,984	3,039	244,212	24,421		30,200	\$304,899	\$488
5	GAS & CLEANUP AND PIPING	23,655	2,630	15,774	1,104	43,163	4,316		6,410	\$53,889	\$86
6	COMBUSTION TURBINE/ACCESSORIES	115 350		4 450	201	110 703	11.070		47 776	¢1.40.4.40	#220
1.0	Compustion Turbine Accessories	115,259	555	4,103 624	291 44	1 223	122		182	\$149,449 \$1,527	\$239 \$2
0.2-0.0	Subtotal 6	115.259	555	4.777	334	120.925	12.093		17.957	\$150.975	\$242
7	HRSG DUCTING & STACK			·		,				. ,	
7.1	Heat Recover Stream Generator	30,540		4,064	284	34,888	3,489		5,181	\$43,558	\$70
7.2-7.9	SCR System, Ductwork and Stack	2,681	1,650	2,414	169	6,914	691		1,027	\$8,632	\$14
	Subtotal 7	33,221	1,650	6,478	453	41,802	4,180		6,208	\$52,190	\$84
8	STEAM TURBINE GENERATOR										
8.1	Steam TG & Accessories	30,783		3,763	263	34,810	3,481		5,169	\$43,460	\$70
8.2-8.9	Turbine Plant Auxiliaries & Steam Piping	7,411	682	5,875	411	14,379	1,438		2,135	\$17,952	\$29
_	Subtotal 8	38,194	682	9,638	675	49,189	4,919		7,305	\$61,412	\$98
9	COOLING WATER SYSTEM	9,297	5,036	7,937	556	22,825	2,283		3,390	\$28,498	\$46
10	ASH/SPENT SORBENT HANDLING SYS	15,219	1,232	8,042	563	25,056	2,506		3,721	\$31,283	\$50
11	ACCESSORY ELECTRIC PLANT	14,218	6,335	16,077	1,125	37,755	3,775		5,607	\$47,137	\$75
12	INSTRUMENTATION & CONTROL	6,727	1,017	5,061	354	13,159	1,316		1,954	\$16,429	\$26
13	IMPROVEMENTS TO SITE	2,443	1,441	5,728	401	10,013	1,001		1,487	\$12,501	\$20
14	BUILDINGS & STRUCTURES		4,430	5,686	398	10,514	1,051		1,561	\$13,126	\$21
	TOTAL COST	\$536,925	\$44,498	\$166,799	\$11,676	\$759,898	\$75,990		\$112,845	\$948,732	\$1,519

Exhibit 34 Case 4 - Shell Gasifier-Based IGCC Total Plant Capital Costs with Dual Gasifier Train

	Client:	DEPARTMEN	T OF ENER	GY					Report Date:	20-Jan-06	
	Project:	Rocketdyne IG	CC Power	Plant							
					TOTAL PLA		/IARY				
	Case:	Case 4 Shell IC	GCC for Pov	ver Productior	۱ 	- · ·		_	000.4	* 4000	
L	Plant Size:	624.62	MVV,net	Estimat	e Type:	Conceptual	Cost Base	(December)	. 2004	; \$X1000	
Acct	Item/Description	Equipment	Material	La	bor Indirect	Bare Erected	Eng'g CM	Contin	Broject	TOT. PLANT	COST ¢/k/M
1		0.064	1 001	<u> </u>	582	20.763	2.076	FIDCess	3 083	\$25 Q22	\$1 K VV
		9,904	1,901 5 000	42.024	075	20,705	2,070		3,003	\$20,922	±
2		18,100	5,833	13,931	975	99,440	9,944		14,767	\$124,151	\$199
3	FEEDWATER & MISC, BOP SYSTEMS	6,941	6,256	7,369	516	21,082	2,108		3,131	\$26,321	\$42
4 4.1 4.2	GASIFIER & ACCESSORIES Gasifier, Syngas Cooler & Auxiliaries (Shell) Syngas Cooling	125,000 w/4.1		60,000 w/4.1	4,200	189,200	18,920		28,096	\$236,216	\$378
4.3	ASU/Oxidant Compression	64,216		w/Equip		64,216	6,422		9,536	\$80,174	\$128
4.4-4.9	Other Gasification Equipment	45,563	5,502	16,056	1,124	68,245	6,825		10,134	\$85,204	\$136
	Subtotal 4	234,779	5,502	76,056	5,324	321,661	32,166		47,767	\$401,594	\$643
5	GAS & CLEANUP AND PIPING	23,655	2,630	15,774	1,104	43,163	4,316		6,410	\$53,889	\$86
6 6.1 6.2-6.9	COMBUSTION TURBINE/ACCESSORIES Combustion Turbine Generator Combustion Turbine Accessories Subtotal 6	115,259 115,259	555 555	4,153 624 4,777	291 44 334	119,703 1,223 120,925	11,970 122 12,093		17,776 182 17,957	\$149,449 \$1,527 \$150,975	\$239 \$2 \$242
7 7.1 7.2-7.9	HRSG, DUCTING & STACK Heat Recover Stream Generator SCR System, Ductwork and Stack Subtotal 7	30,540 2,681 33,221	1,650 1,650	4,064 2,414 6,478	284 169 453	34,888 6,914 41,802	3,489 691 4,180		5,181 1,027 6,208	\$43,558 \$8,632 \$52,190	\$70 \$14 \$84
8 8.1 8.2-8.9	STEAM TURBINE GENERATOR Steam TG & Accessories Turbine Plant Auxiliaries & Steam Piping Subtotal 8	30,783 7,411 38,194	682 682	3,763 5,875 9,638	263 411 675	34,810 14,379 49,189	3,481 1,438 4,919		5,169 2,135 7,305	\$43,460 \$17,952 \$61,412	\$70 \$29 \$98
9	COOLING WATER SYSTEM	9,297	5,036	7,937	556	22,825	2,283		3,390	\$28,498	\$46
10	ASH/SPENT SORBENT HANDLING SYS	15,219	1,232	8,042	563	25,056	2,506		3,721	\$31,283	\$50
11	ACCESSORY ELECTRIC PLANT	14,218	6,335	16,077	1,125	37,755	3,775		5,607	\$47,137	\$75
12	INSTRUMENTATION & CONTROL	6,727	1,017	5,061	354	13,159	1,316		1,954	\$16,429	\$26
13	IMPROVEMENTS TO SITE	2,443	1,441	5,728	401	10,013	1,001		1,487	\$12,501	\$20
14	BUILDINGS & STRUCTURES		4,430	5,686	398	10,514	1,051		1,561	\$13,126	\$21
	TOTAL COST	\$588,617	\$44,498	\$190,871	\$13,361	\$837,347	\$83,735		\$124,346	\$1,045,428	\$1,674

Exhibit 35 Case 4 - Shell Gasifier-Based IGCC Total Plant Capital Costs with Redundant Gasifier Train

TITLE/DEFINITION			1/20/2006
Case: Plant Size: Fuel(type): Design/Construction: TPC(Plant Cost) Year: Capacity Factor:	Case 4 Shell IGCC for Power Production 624.62 (MW.net) Illinois #6 3.5 (years) 2004 94.0%	Heat Rate Fuel Cost: BookLife: TPI Year: CO2 Removed	8,130 Btu/kWh 1.27 (\$/MMBtu) 20 (years) 2004 (Jan.) (TPD)
CAPITAL INVESTMENT Process Capital & Facilities Engineering(incl.C.M.,H.O.& Fee) Process Contingency		\$x1000 837,347 83,735 0	\$/k₩ 1,340.6 134.1
Project Contingency		124,346	199.1
	TOTAL PLANT COST(TPC) TOTAL CASH EXPENDED \$1,045,428 AFDC 78,193	1,045,428	1,673.7
	TOTAL PLANT INVESTMENT(TPI)	1,123,621	1,798.9
Royalty Allowance Preproduction Costs Inventory Capital Initial Catalyst & Chemicals(w/equ	ip.)	1,000 28,536 7,600	1.6 45.7 12.2 0.9
Land Cost			0.3
		\$1,161,312	1,869.2
OPERATING & MAINTENANC Operating Labor Maintenance Labor Maintenance Material Administrative & Support Labor	<u>= COSTS(2004)</u>	\$x1000 5,466 11,873 22,502 4,127	\$/k₩-yr 8.8 19.0 36.0 <u>6.6</u>
	TOTAL OPERATION & MAINTENANCE(2004)	\$43,968	70.4
	FI×ED O & M (2004)	\$41,330	66.2
	VARIABLE O & M (2004)	\$2,638	4.2
CONSUMABLE OPERATING C Water Chemicals Other Consumables Waste Disposal	COSTS, LESS FUEL(2004)	\$x1000 4,637 6,697 0 3,336	<mark>∉/k₩h</mark> 0.09 0.13 0.00 0.06
	TOTAL CONSUMABLES(2004)	\$14,670	0.29
BY-PRODUCT CREDITS (2004	4)	(\$2,144)	(0.04)
FUEL COST(2004)		\$53,086	1.03
PRODUCTION COST SUMMAI Fixed O & M Variable O & M Consumables By-product Credit Fuel	₹¥ TOTAL PRODUCTION COST	-	2004 Costs <u>¢/kWh</u> 0.80 0.05 0.29 (0.04) <u>1.03</u> 2.13
2004 CARRYING CHARGES (Capital)		3.12
2004 BUSBAR COST OF POW	FCR=0.138 <u>ER</u>		5.25

Exhibit 36 Case 4 - Shell Gasifier-Based IGCC Capital Investment & Operating Cost Requirement Summary (94% Capacity factor)

TITLE/DEFINITION			1/20/2006
Case: Plant Size: Fuel(type): Design/Construction: TPC(Plant Cost) Year: Capacity Factor:	Case 4 Shell IGCC for Power Production 624.62 (MW,net) Illinois #6 3.5 (years) 2004 90.0%	Heat Rate Fuel Cost: BookLife: TPI Year: CO2 Removed	8,130 Btu/kWh 1.27 (\$/MMBtu) 20 (years) 2004 (Jan.) (TPD)
CAPITAL INVESTMENT Process Capital & Facilities Engineering(incl.C.M.,H.O.& Fee) Process Contingency Project Contingency		\$x1000 837,347 83,735 0 124,346	\$/k₩ 1,340.6 134.1 0.0 <u>199.1</u>
	TOTAL PLANT COST(TPC)TOTAL CASH EXPENDED\$1,045,428AFDC78,193	1,045,428	1,673.7
	TOTAL PLANT INVESTMENT(TPI)	1,123,621	1,798.9
Royalty Allowance Preproduction Costs Inventory Capital Initial Catalyst & Chemicals(w/equ Land Cost	ip.)	1,000 28,483 7,360 555	1.6 45.6 11.8 0.9
			1 050 0
OPERATING & MAINTENANC Operating Labor Maintenance Labor Maintenance Material Administrative & Support Labor	E COSTS(2004)	\$x1000 5,466 11.873 22,502 4,127	\$/k₩-yr 8.8 19.0 36.0 6.6
	TOTAL OPERATION & MAINTENANCE(2004)	\$43,968	70.4
	FI×ED O & M (2004)	\$39,571	63.4
	VARIABLE O & M (2004)	\$4,397	7.0
CONSUMABLE OPERATING C Water Chemicals Other Consumables Waste Disposal	COSTS, LESS FUEL(2004)	\$x1000 4,440 6,412 0 3,194	¢/k₩h 0.09 0.13 0.00 0.06
	TOTAL CONSUMABLES(2004)	\$14,046	0.29
BY-PRODUCT CREDITS (200-	4)	(\$2,052)	(0.04)
FUEL COST(2004)		\$50,827	1.03
PRODUCTION COST SUMMAI Fixed O & M Variable O & M Consumables By-product Credit Fue	TOTAL PRODUCTION COST	-	2004 Costs <u>¢/kWh</u> 0.80 0.09 0.29 (0.04) 1.03 2.17
2004 CARRYING CHARGES (Capital)		3.25
2004 BUSBAR COST OF POW	<u>'ER</u>		5.42

Exhibit 37 Case 4 - Shell Gasifier-Based IGCC Capital Investment & Operating Cost Requirement Summary (90% Capacity factor)

TITLE/DEFINITION			1/20/2006
Case: Plant Size: Fuel(type): Design/Construction: TPC(Plant Cost) Year: Capacity Factor:	Case 4 Shell IGCC for Power Production 624.62 (MW,net) Illinois #6 3.5 (years) 2004 85.0%	Heat Rate Fuel Cost: BookLife: TPI Year: CO2 Removed	8,130 Btu/kWh 1.27 (\$/MMBtu) 20 (years) 2004 (Jan.) (TPD)
CAPITAL INVESTMENT		\$x1000	\$/k¥
Process Capital & Facilities		759,898	1,216.
Engineering(incl.C.M. H.O.& Fee)		75,990	121.
Process Contingency Project Contingency		U 112,845	0. 180.
	TOTAL PLANT COST(TPC)	948,732	1,518.9
	TOTAL CASH EXPENDED \$948,732		
	AFDC 70,960		
	TOTAL PLANT INVESTMENT(TPI)	1,019,693	1,632.
Royalty Allowance		1,000	1.
Preproduction Costs		26,075	41.
Inventory Capital Initial Catalyst & Chemicals(w/equi	ip.)	7,060	11.:
Land Cost		555_	0.
	TOTAL CAPITAL REQUIREMENT(TCR)	\$1,054,382	1,688.
OPERATING & MAINTENANCE (COSTS(2004)	<u>\$x1000</u>	<u>\$/kW-y</u>
Operating Labor		5,466	8.
Maintenance Labor		10,775	17.
Administrative & Support Labor		4,127	6.
	TOTAL OPERATION & MAINTENANCE(2004)	\$40,789	65.
	FIXED 0 & M (2004)	\$34,670	55.5
	VARIABLE O & M (2004)	\$6,118	9.8
CONSUMABLE OPERATING CO	STS, LESS FUEL(2004)	<u>\$x1000</u>	<u>¢/kWł</u>
Water		4,193	0.09
Other Concurrables		000,0	0.13
Waste Disposal		3,017	0.06
	TOTAL CONSUMABLES(2004)	\$13,266	0.29
BY-PRODUCT CREDITS (2004)		(\$1,938)	(0.04
FUEL COST(2004)		\$48,004	1.03
		<u>20</u>	004 Costs
PRODUCTION COST SUMMARY Eived O. 8. M			<u>¢/kWh</u> 0.75
Variable O & M			0.13
Consumables			0.29
By-product Credit	:		(0.04)
Fuel			1.03
	TOTAL PRODUCTION COST		2.15
2004 CARRYING CHARGES (Ca	<u>pital)</u> ECR=0 138		3.13
2004 BUSBAR COST OF POWER	<u>R</u>		5.28

Exhibit 38 Case 4 - Shell Gasifier-Based IGCC Capital Investment & Operating Cost Requirement Summary (85% Capacity factor)
6 CASE 5 - PWR GASIFIER BASED H₂ PRODUCTION PLANT DESCRIPTION AND RESULTS

Consuming 419,050 lb/hr of Illinois #6 coal, the PWR hydrogen production plant produces 56,179 lb/hr of $99.99\% + H_2$. The plant requires an additional 31 MWe of power from another source to meet a total auxiliary load of 117 MWe.

A block flow diagram and associated stream tables for the Case 5 PWR gasifier-based H_2 production plant in partial quench mode are presented in Exhibit 39 and Exhibit 40, respectively.

6.1 **Process Description**

The Case 5 PWR H_2 production plant consists of two compact, partially quenched gasifiers each fed with approximately 1,800 tpd of 95% oxygen produced via an on site Air Separation Unit (ASU) and approximately 2,500 tpd of Illinois #6 coal dried from 11.12% to 5% in an AGR tail gas-fired coal dryer. It is assumed that Illinois #6 coal has 5% inherent moisture.

A proprietary PWR coal extrusion feed system is utilized for feeding dried coal to the PWR gasifier. Each train in the PWR process requires approximately 140 tpd of CO₂ as coal transport gas as well as approximately 390 tpd of steam injection.

The PWR process claims an adiabatic flame temperature of ~2500°F, 1,000 psig operating pressure, and 100% carbon conversion. Approximately 487 tpd of slag (100% ash) is removed from the gasification reaction products by using a partial quench to cool and then a candle filter to separate the slag.

In order to maximize H_2 production, the syngas is sent through a series of Water Gas Shift (WGS) reactors with intercooling to maximize overall conversion. Steam is injected into the syngas upstream of the WGS reactors to maintain a 1.1:1 molar ratio of water to dry gas at the inlet to the first reactor. Approximately 99% of the CO and a stoichiometric amount of H_2O in the syngas are converted to CO_2 and H_2 . The shifted gas then goes through a series of gas coolers and cleanup processes including a carbon bed mercury removal system. A dual stage Selexol AGR treats the stream of synthesis gas to reduce the level of total sulfur (H_2S and COS) to no more than 30 ppm while concentrating the CO_2 for compression and capture. Carbon dioxide from the Selexol system is compressed to 2,200 psia for transport off site. COS hydrolysis is accomplished in the WGS reactors, eliminating the need for dedicated reactors to facilitate the reaction. Sour gas from the AGR plant is fed to a Claus plant, where elemental sulfur is recovered.

The cleaned H_2 -rich stream from the Selexol unit is sent to a Pressure Swing Adsorption (PSA) system design to provide a concentrated H_2 product at 99.99%+ purity. Off-gas from the PSA is sent to a gas-fired waste heat boiler for combustion and subsequent steam generation. A portion of the steam generated is used to drive a non-reheat steam turbine for power generation, all of which is used to off-set the auxiliary power demand of the plant.

6.2 Modeling Assumptions for PWR Gasifier

Refer to Section 2.2 for a detailed discussion on the modeling assumptions used for PWR gasifier performance prediction in this study.

Exhibit 39 Case 5 - PWR H₂ Production Plant Block Flow Diagram

	1	2	3	4	5 ^A	6 ^A	7	8	10	13
V-L Mole Fraction										
Ar	0.0094	0.0036	0.0360	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
CH ₄	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
CO	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001
CO ₂	0.0003	0.0005	0.0000	0.0000	0.0000	0.3257	0.0000	0.0000	0.0000	0.9963
COS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
H ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0020
H ₂ O	0.0104	0.0172	0.0000	0.0000	0.0000	0.6743	1.0000	0.0000	1.0000	0.0015
H ₂ S	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
N ₂	0.7722	0.9786	0.0140	0.0500	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001
NH ₃	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
O ₂	0.2077	0.0000	0.9500	0.9500	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
SO ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	1.0000	0.0000	1.0000	1.0000
					-	-		-	-	
V-L Flowrate (lb _{mol} /hr)	42,993	26,080	240	9,268	2,589	1,614	3,591	0	6,907	20,161
V-L Flowrate (lb/hr)	1,240,520	727,474	7,730	294,709	46,598	42,706	64,696	0	124,427	884,738
Solids Flowrate (lb/hr)	0	0	0	0	372,452	372,452	0	40,634	0	0
	074		00	000	50	405	000	500	000	50
Temperature (°F)	2/1	55	90	800	59	195	800	500	600	58
Pressure (psia)	225.0	16.4	56.4	1,191.2	14.7	1,200.0	1,200.0	990.0	1,000.0	55.0
	0.00	0.00	0.04	0.70		l	1.00		1.02	0.42
Density (ID/It)	0.83	0.08	0.31	2.76			1.60		1.93	0.43
wolecular weight	20.00	27.89	32.23	31.80			18.02		18.02	43.00

Exhibit 40 Case 5 - PWR H₂ Production Plant Stream Table

A - Solids flowrate includes coal; V-L flowrate includes water from coal (11.12 wt% moisture)

Note: Streams containing proprietary data are excluded from these stream tables

	14	15	16	17	18	19	20	21	22	23	24	25
V-L Mole Fraction												
Ar	0.0000	0.0000	0.0000	0.0001	0.0000	0.0098	0.0002	0.0002	0.0002	0.0000	0.0009	0.0058
CH ₄	0.0000	0.0000	0.0000	0.0003	0.0000	0.0000	0.0015	0.0015	0.0015	0.0000	0.0058	0.0000
CO	0.0001	0.0001	0.0000	0.0124	0.0000	0.0121	0.0108	0.0108	0.0108	0.0000	0.0414	0.0000
CO ₂	0.9963	0.9963	0.4941	0.3466	0.0000	0.5693	0.0586	0.0586	0.0586	0.0000	0.2253	0.0879
COS	0.0000	0.0000	0.0003	0.0004	0.0000	0.0002	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
H ₂	0.0020	0.0020	0.0000	0.0136	0.0000	0.1806	0.8810	0.8810	0.8810	1.0000	0.5421	0.0000
H ₂ O	0.0015	0.0015	0.0133	0.0000	0.0000	0.0006	0.0000	0.0000	0.0000	0.0000	0.0002	0.1842
H ₂ S	0.0000	0.0000	0.4127	0.0404	0.0000	0.0366	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
N ₂	0.0001	0.0001	0.0795	0.0031	0.0000	0.1908	0.0479	0.0479	0.0479	0.0000	0.1843	0.7017
NH ₃	0.0000	0.0000	0.0000	0.5831	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0 ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0204
SO ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
V-L Flowrate (lb _{mol} /hr)	527	19,634	851	331	41	880	37,777	120	37,656	27,866	9,790	30,419
V-L Flowrate (lb/hr)	23,126	861,612	32,577	8,965	0	28,837	227,864	725	227,139	56,179	170,960	843,488
Solids Flowrate (lb/hr)	0	0	0	0	10,478	0	0	0	0	0	0	0
Temperature (°F)	195	353	120	450	296	95	70	70	70	193	170	280
Pressure (psia)	1,194.2	2,900.0	71.0	113.5	51.0	767.5	678.0	678.0	678.0	668.0	67.8	14.5
Enthalpy (Btu/lb)												
Density (lb/ft ³)	7.46	14.59	0.44	0.32		4.22	0.72	0.72	0.72	0.19	0.18	0.05
Molecular Weight	43.88	43.88	38.30	27.06		32.76	6.03	6.03	6.03	2.02	17.46	27.73

Exhibit 40 (continued) Case 5 - PWR H2 Production Plant Stream Table

6.3 Equipment Descriptions

Coal Preparation and Feed Systems

The coal as received contains 11.12 percent moisture, and must be dried to 5 percent or less moisture. The coal is simultaneously crushed and dried using an air-fed combustion of clean synthesis gas from the exit of the Selexol unit. Crushed and dried coal is delivered to a surge hopper with an approximate 2-hour capacity.

The coal is drawn from the surge hoppers and fed through a developmental proprietary dry coal feed pump system, which uses CO_2 to convey the coal to the gasifiers.

Air Separation Unit

The air separation plant is designed to produce a nominal output of 3,600 tons/day of 95 percent pure O_2 from two ASU production trains. Most of the oxygen is used in the gasifier. A small portion, approximately 92 tons/day, is used in the Claus plant. The air compressor is powered by an electric motor.

Gasifier

The PWR gasifier uses a plug-flow entrained reactor and a multi-port injection nozzle to increase the kinetics and conversion of the gasification reaction. The PWR gasification process gasifies dried coal with steam and 95% (by volume) oxygen at ~2500°F and 1,000 psia. The PWR process claims a 100% carbon conversion and faster kinetics allowing for a more compact gasifier design. The prototype reactor designed to process 3,000 tons of dried coal per day is anticipated to be 39 inches in diameter and 15 feet in length. The amount of dried coal processed in this study is approximately 5,000 tons per day.

Syngas Cooling

Hot syngas and molten solids from the reactor flow downward through a quench region where the syngas is cooled to ~500°F. The gas and solidified slag then flow through a cyclone and candle filter system for dry particulate removal, from which the recovered solids are let down to ambient pressure.

Syngas Scrubbing

The syngas enters the syngas scrubber and is directed downwards by a dip tube into a water sump at the bottom of the syngas scrubber. Most of the solids are separated from the syngas at the bottom of the dip tube as the syngas goes upwards through the water. From the overhead of the syngas scrubber, the syngas enters the low-temperature gas cooling section for further cooling.

The water removed from the syngas scrubber contains all the solids that were not removed in the quench gasifier water sump. In order to limit the amount of solids recycled to the quench chamber, a continuous blowdown stream is removed from the bottom of the syngas scrubber. The blowdown is sent to the vacuum flash drum in the black water flash section. The circulating scrubbing water is pumped by the syngas scrubber circulating pumps to the quench gasifier.

The slag handling system removes solids from the gasification process equipment. These solids consist of a small amount of unconverted carbon and essentially all of the ash contained in the feed coal. These solids are in the form of glass, which is non-leaching and fully encapsulates any metals.

Water Gas Shift Reaction

The saturated syngas enters the WGS system fully saturated at 446°F. The raw-gas shift to produce H_2 requires 124,427 lb/hr of steam, fulfilling a vendor-specified steam to dry gas molar ratio of 1.1. Steam at 600°F and 1,000 psia is added to the syngas, bringing the stream temperature to ~460°F as it enters the WGS reactors. The water gas shift reaction is as follows:

$$CO + H_2O \rightarrow H_2 + CO_2$$

There are a total of three WGS reactors containing proprietary sulfur-tolerant catalyst. Each of these reactor stages is intercooled, bringing the stream temperature down to 450°F before entering the next WGS reactor. The WGS reaction is exothermic and increases the temperature of the syngas stream, though conversion is favored at lower temperatures. Lowering the temperature to 450°F before each stage results in a 98.6% overall conversion of CO.

The WGS reactors also hydrolyzes COS and converts HCN to NH₃, therefore, no dedicated COS hydrolysis reactor is required.

Low Temperature Gas Cooling

Before the raw fuel gas can be treated in the AGR process, it must be cooled to about 100° F. During this cooling through a series of heat exchangers, part of the water vapor condenses. This water, which contains some NH₃, is sent to the wastewater treatment section.

Mercury Removal

Refer to Case 1 in section 2.3 for a description of the Mercury Removal system used in Case 5, since they are similar.

Acid Gas/CO₂ Removal

Case 5 utilizes a multi-stage Selexol process to remove sulfur with ~90% CO₂ capture. The Selexol process treats the stream of synthesis gas to reduce the level of total sulfur (H₂S and COS) to no more than 30 ppm prior to it being sent to the PSA, while concentrating the CO₂ for compression and capture. A recycle stream of acid gas from the sulfur recovery unit (SRU) is also treated. An acid gas stream that contains ~50 percent sulfur is produced.

High sulfur, shifted gas is sent to the first absorber, which is labeled the H_2S absorber. Here it contacts a "CO₂-loaded" solvent, which enters at the top of the tower. In the H_2S absorber, H_2S , COS, CO₂, and other gases such as hydrogen, are transferred from the gas phase to the liquid phase. The treated gas exits the absorber and is sent to the CO₂ absorber where the gas first contacts a "semi-lean" solvent in the middle stages of the absorber. In these stages of the CO₂ absorber, the large majority of the CO₂ is transferred from the gas phase to the liquid phase. Fully regenerated, lean solvent enters the upper stages of this CO₂ absorber, removing additional CO₂ from the gas stream. The gas then leaves the CO₂ absorber for treatment in the Pressure Swing Adsorption system to concentrate the H₂. The solvent from the CO₂ absorber is split and

a portion is sent to the H_2S absorber as the "CO₂-loaded" solvent. The remaining portion of the solvent is passed through a series of flash drums which transfer the absorbed CO₂ from the liquid phase into the gas phase for compression. The remaining solvent is sent to the mid-stages of the CO₂ absorber as the "semi-lean" solvent to absorb the majority of gas phase CO₂.

The solvent stream from the H_2S absorber is termed rich solvent and is sent to the H_2S concentrator, where portions of the CO₂, CO, H₂, and other gases are stripped from the solvent. Nitrogen from the ASU is used as the stripping medium. A portion of the overhead gas is recycled back to the H_2S absorber for further treatment. The partially regenerated solvent exits the H_2S concentrator and is sent to the stripper, where the solvent is fully regenerated. All gases are transferred from the liquid phase to the gas phase in this stripper and sent to the Sulfur Recovery System (SRS). The Tail gas from the SRS is recycled back to the H_2S absorber.

Sour Water Stripper

Refer to Case 1 in section 2.3 for a description of the Sour Water Stripper used in Case 5, since they are similar.

Sulfur Recovery System

The sulfur recovery unit is a Claus bypass-type sulfur recovery unit utilizing oxygen instead of air. The Claus plant produces molten sulfur by reacting approximately a third of the H₂S in the feed to SO₂, then reacting the H₂S and SO₂ to sulfur and water. Utilizing oxygen instead of air in the Claus plant reduces the overall cost of the sulfur recovery plant. The sulfur plant will produce approximately 113 long tons of elemental sulfur per day. Feed for this case consists of acid gas from both acid gas cleanup units and a vent stream from the sour water stream in the gasifier section. Tail gas from the Claus unit, after hydrogenation, is recycled to the Selexol unit. The combination of Claus technology and tail gas recycle will result in an overall sulfur recovery exceeding 99 percent.

Pressure Swing Adsorption System

The H₂-rich gas from the Selexol unit enters multiple, parallel beds of proprietary adsorbent. These beds are used in a semi-batch adsorption/desorption sequence for continuous H₂ production. The H₂-rich stream is fed at high pressure (~680 psia) to force contaminant adsorption onto the beds. The H₂ does not adsorb as strongly as the contaminant compounds, thus, can exit the beds at concentrations in excess of 99.99% before the beds become saturated.

Desorption occurs by depressurizing the beds to ~70 psia and back-flushing them with H_2 product. This low pressure flush purges the contaminants consisting of CO, CO₂, N₂, and CH₄ from the bed in a stream of ~50% H₂. Overall H₂ recovery for the PSA system is 84%; however, the overall H₂ recovery of the plant is slightly less than 84% due to the fuel requirement for coal drying.

Boiler

Off-gas from the PSA unit is combusted with excess air in a waste heat boiler to provide heat for steam generation. A conventional natural gas-fired boiler must be retrofitted with syngas burners to provide stable combustion with low NOx generation.

Steam Turbine

A non-reheat steam turbine is used to expand the excess $1,200 \text{ psia}/1000^{\circ}\text{F}$ steam generated in the Waste Heat Boiler to approximately 2" Hga (the condenser backpressure dictated in the design basis). The power output of the steam turbine does not fully off-set the auxiliary power demand of the plant, which was a design decision made in the interest of maximizing the efficiency of H₂ production.

6.4 Performance Results

Consuming 419,050 lb/hr of Illinois #6 coal, the PWR hydrogen production plant produces 56,179 lb/hr of $99.99\% + H_2$. The steam produced by the plant generates 86 MWe for use in the plant. The plant requires an additional 31 MWe for a total auxiliary load of 116 MW_e.

The performance results are summarized in Exhibit 41.

DOWER SUMMARY 100 Percent La	POWER SUMMARY - 100 Percent Load									
Gross Power at Generator Terminal	au s kWo									
Plant Output	5, N#15									
Steam Turbine Power	85 855	k\N/								
	<u> </u>	L-\N/								
I Ulai Auvilianu Laad	03,033	r v v _e								
	540	12/ 1/								
	04U	KVV _e								
	1,100	KVV _e								
Slag Handling	33U	KVV _e								
Air Separation Unit Auxiliaries	1,000	kVVe								
ASU Main Air Compressor	53,500	kW _e								
Oxygen Compressor	9,327	kW _e								
CO ₂ Compression	38,995	kW _e								
Tail Gas Compression	2,417	kW _e								
Boiler Air Compressor	381	kW _e								
Quench Pumps	667	kW _e								
Condensate Pump	230	kW _e								
Scrubber Pumps	300	kW _e								
WGS Makeup Pump	948	kW _e								
Cooling Tower Fans	570	kWe								
Selexol Unit Auxiliaries	2,700	kWe								
Claus Plant Auxiliaries	200	kWe								
Miscellaneous Balance-of-Plant	3,000	kWe								
Transformer Losses	260	kWe								
Total	116,465	kW _e								
Plant Performance										
Net Plant Power	-30,610	kW _e								
H ₂ (99.99%) Production	56,179	lb/hr								
Coal Feed Flowrate	419,050	lb/hr								
Thermal Input ¹	1,432,718	kWt								
Condenser Duty	606	MMBtu/hr								

Exhibit 41 Case 5 - PWR H₂ Production Plant Performance Summary

1 - HHV of Illinois #6 11.12% Moisture Coal is 11,666 Btu/lb

6.5 Economic Results

The capital and operating costs estimate results are shown in Exhibit 42 through Exhibit 45. The Total Plant Cost is estimated to be 700,000 PTPD H₂. At a 94%, 90% and 85% capacity factor, the Levelized Cost of Hydrogen is 730, 748 and 773 PD n, respectively.

	Client:	DEPARTMEN	IT OF ENER	CGY				Report Date:	27-Mar-06	
	Project:	Rocketdyne P	ower Plant S	Studies						
					TOTAL PLA	NT COST SUM	/IARY			
	Case:	Case 5 -Rock	etdyne Gasif	fier, H2 Copro	d, Sequest, B	oiler				
	Plant Size:	674.15		Estimat	te Type:	Conceptual	Cost Bas	e (January) 2005	; \$X1000	
No	Item/Description	Cost	Cost	La	Dor Indirect	Bare Erected	HO& Fee	Process Project	101. PLA \$	\$/TPDH2
1	COAL & SORBENT HANDLING	9776	1 817	7 827	548	19 968	1 997	4 393	\$26 358	\$39
2	COAL PREP & FEED SYSTEMS	12 900	5 981	9.968	137	28,986	2 899	6377	\$38,261	\$57
2	EEEDWATER & MISC BOR SYSTEMS	1.836	1 378	1 98/	120	5 336	53/	1 376	\$7.246	¢01
		1,050	1,570	1,504	155	3,330	554	1,570	\$7,240	φπ
4.1	Gasification System	30.395	9.978	16.280	1.140	57.793	5.779	7.077	\$70.648	\$105
4.2	Other Gasifier	w/4.1			.1	,			,,	••••
4.3	ASU/Oxidant Compression	61,415		w/equip.		61,415	6,142	3,378	\$70,934	\$105
4.4-4.9	Other Gasification Equipment	W/4.1	0.070	16 200	1 1 4 0	110 202	11.021	10 454	¢141 502	¢210
-		91,010	9,910	10,200	1,140	119,208	11,921	10,404	\$141,565	\$210 \$200
		08,203	3,804	34,000	2,385	108,576	10,858	21,242	\$140,676	\$209
61	COMBUSTION TURBINE/ACCESSORIES									
6.2-6.9	Combustion Turbine Accessories									
	Subtotal 6									
7	BOILER, DUCTING & STACK									
7.1	Gas-Fired Steam Boiler	2,698		719	50	3,467	347	572	\$4,386	\$7
7.2-7.9	SCR System, Ductwork and Stack	601	701	888	62	2,251	225	455	\$2,932	\$4
		3,290	701	1,007	113	5,719	572	1,027	\$7,318	ן או
8	STEAM TURBINE GENERATUR Steam TG & Accessories	6.816		Q1/I	64	7 794	770	857	\$9.431	\$14
8.2-8.9	Turbine Plant Auxiliaries & Steam Piping	1.859	162	1.396	98	3.515	352	671	\$4,538	\$7
	Subtotal 8	8,676	162	2,310	162	11,309	1,131	1,529	\$13,969	\$21
9	COOLING WATER SYSTEM	2,121	1,280	2,014	141	5,557	556	1,127	\$7,239	\$11
10	ASH/SPENT SORBENT HANDLING SYS	9,965	5,577	9,478	663	25,684	2,568	3,040	\$31,292	\$46
11	ACCESSORY ELECTRIC PLANT	6,998	3,152	7,813	547	18,510	1,851	3,452	\$23,813	\$35
12	INSTRUMENTATION & CONTROL	2,649	379	1,888	132	5,048	505	779	\$6,332	\$9
13	IMPROVEMENTS TO SITE	2,000	1,489	5,290	370	9,150	915	3,019	\$13,084	\$19
14	BUILDINGS & STRUCTURES		4,522	5,789	436	10,748	1,075	2,957	\$14,779	\$22
	TOTAL COST	\$220,292	\$40,281	\$106,313	\$6,912	\$373,798	\$37,380	\$60,772	\$471,950	\$700

Exhibit 42 Case 5 - PWR H₂ Production Total Plant Capital Costs

TITLE/DEFINITION Case: Plant Size: Fuel(type): Design/Construction: TPC(Plant Cost) Year: Capacity Factor:	Case 5 -Rocketdyne Gasifier, H2 Coprod, Sequ Case 594 674.15 TPD H2 Illinois #6 3.5 (years) 2004 94.0%	est, Boiler Heat Rate Fuel Cost: BookLife: TPI Year: CO2 Removed	3/27/2006 N/A Btu/kWh 1.27 (\$/MMBtu) 20 (years) 2010 (Jan.) (TPD)
CAPITAL INVESTMENT Process Capital & Facilities Engineering(incl.C.M.,H.O.& Fee) Process Contingency Project Contingency		\$x1000 373,798 37,380 0 60,772	\$/TPD H2 554.47 55.45 0.00 <u>90.15</u>
	TOTAL PLANT COST(TPC) TOTAL CASH EXPENDED \$471,950 AFDC 35,299	471,950	700.07
Royalty Allowance Preproduction Costs Inventory Capital Initial Catalyst & Chemicals(w/equ Land Cost	ip.)	1,000 14,121 6,550 555	1.48 20.95 9.72 0.82
	TOTAL CAPITAL REQUIREMENT(TCR)	\$529,475	785.40
OPERATING & MAINTENANC Operating Labor Maintenance Labor Maintenance Material Administrative & Support Labor	<u>E COSTS(2005)</u>	\$x1000 4.625 5.360 10.158 3.492	\$/Ton 20.00 23.17 43.92 15.10
	TOTAL OPERATION & MAINTENANCE(2005)	\$23,636	102.19
	FI×ED O & M (2005)	\$22,218	96.06
	VARIABLE O & M (2005)	\$1,418	6.13
CONSUMABLE OPERATING (Water Chemicals Other Consumables Waste Disposal	COSTS, LESS FUEL(2005) TOTAL CONSUMABLES(2005)	\$x1000 2.852 5.111 0 2.515 \$10,478	\$/Ton 12.33 22.10 0.00 <u>10.87</u> 45.30
BY-PRODUCT CREDITS (200	5)	(\$2,157)	-9.32
FUEL COST(2005)		\$51,121	221.02
PURCHASED ELECTRICITY	COST(2005)	\$12,603	54.49
PRODUCTION COST SUMMA Fixed O & M Variable O & M Consumables By-product Credir Fue Purchased Electricity	RY (2005) I I I I TOTAL PRODUCTION COST	-	\$/Ton \$96.06 \$6.13 \$45.30 (\$9.32) \$221.02 \$54.49 \$413.67
2005 CARRYING CHARGES (<u>Capital)</u> FCR=0.138		\$315.90
2005 COST OF HYDROGEN		or \$/ka	\$729.57 \$0.80

Exhibit 43 Case 5 - PWR H₂ Production Plant Capital Investment & Operating Cost Requirement Summary (94% Capacity factor)

TITLE/DEFINITION Case: Plant Size: Fuel(type): Design/Construction: TPC(Plant Cost) Year: Capacity Factor:	Case 5 -Rocketdyne Gasifier, H2 Coprod, Sequ Case 590 674.15 TPD H2 Illinois #6 3.5 (years) 2004 90.0%	est, Boiler Heat Rate Fuel Cost: BookLife: TPI Year: CO2 Removed	3/27/2006 N/A Btu/kWh 1.27 (\$/MMBtu) 20 (years) 2010 (Jan.) (TPD)
CAPITAL INVESTMENT Process Capital & Facilities Engineering(incl.C.M.,H.O.& Fee) Process Contingency Project Contingency		\$x1000 373,798 37,380 0 60,772	\$/TPD H2 554.47 55.45 0.00 90.15
	TOTAL PLANT COST(TPC) TOTAL CASH EXPENDED \$471,950 AFDC 35,299	471,950	700.07
Royalty Allowance Preproduction Costs Inventory Capital Initial Catalyst & Chemicals(w/equ Land Cost	ip.)	507,249 1,000 14,084 6,331 555	1.48 20.89 9.39 0.82
	TOTAL CAPITAL REQUIREMENT(TCR)	\$529,219	785.02
OPERATING & MAINTENANC Operating Labor Maintenance Labor Maintenance Material Administrative & Support Labor	E COSTS(2005)	\$x1000 4,625 5,360 10,158 3,492	\$/Ton 20.89 24.20 45.87 15.77
	TOTAL OPERATION & MAINTENANCE(2005)	\$23,636	106.73
	FI×ED O & M (2005)	\$21,272	96.06
	VARIABLE O & M (2005)	\$2,364	10.67
CONSUMABLE OPERATING (Water Chemicals Other Consumables Waste Disposal	COSTS, LESS FUEL(2005) TOTAL CONSUMABLES(2005)	\$x1000 2.730 4.894 0 2.408 \$10.032	\$/Ton 12.33 22.10 0.00 <u>10.87</u> 45.30
BY-PRODUCT CREDITS (200	5)	(\$2,065)	-9.32
FUEL COST(2005)		\$48,946	221.02
PURCHASED ELECTRICITY	COST(2005)	\$12,066	54.49
PRODUCTION COST SUMMA Fixed O & M Variable O & M Consumables By-product Credir Fue Purchased Electricity	RY (2005) I I I I TOTAL PRODUCTION COST	-	\$/Ton \$96.06 \$10.67 \$45.30 (\$9.32) \$221.02 \$54.49 \$418.21
2005 CARRYING CHARGES (Capital) FCB=0 138		\$329.78
2005 COST OF HYDROGEN		er \$/ka	\$747.99 \$0.82

Exhibit 44 Case 5 - PWR H₂ Production Plant Capital Investment & Operating Cost Requirement Summary (90% Capacity factor)

TITLE/DEFINITION Case: Plant Size: Fuel(type): Design/Construction: TPC(Plant Cost) Year: Capacity Factor:	Case 5 -Rocketdyne Gasifier, H2 Coprod, Sequ 674.15 TPD H2 Illinois #6 3.5 (years) 2004 85.0%	iest, Boiler Heat Rate Fuel Cost: BookLife: TPI Year: CO2 Removed	3/27/2006 N/A Btu/kWh 1.27 (\$/MMBtu) 20 (years) 2010 (Jan.) (TPD)
CAPITAL INVESTMENT Process Capital & Facilities Engineering(incl.C.M.,H.O.& Fee) Process Contingency Project Contingency		\$x1000 373,798 37,380 0 60,772	\$/TPD H2 554.47 55.45 0.00 90.15
	TOTAL PLANT COST(TPC) TOTAL CASH EXPENDED \$471,950 AFDC 35,299	471,950	700.07
Royalty Allowance Preproduction Costs Inventory Capital Initial Catalyst & Chemicals(w/equ	IOTAL PLANT INVESTMENT(TPI) iip.)	507,249 1,000 14,037 6,058	752.43 1.48 20.82 8.99 0.82
	TOTAL CAPITAL REQUIREMENT(TCR)	\$528 900	784 55
OPERATING & MAINTENANC Operating Labor Maintenance Labor Maintenance Material Administrative & Support Labor	<u>E COSTS(2005)</u>	\$x1000 4,625 5,360 10,158 3,492	\$/Ton 22.11 25.63 48.57 16.70
	TOTAL OPERATION & MAINTENANCE(2005)	\$23,636	113.01
	FI×ED O & M (2005)	\$20,091	96.06
	VARIABLE O & M (2005)	\$3,545	16.95
CONSUMABLE OPERATING (Water Chemicals Other Consumables Waste Disposal	COSTS, LESS FUEL(2005) TOTAL CONSUMABLES(2005)	\$x1000 2,579 4,622 0 2,274 \$9,475	\$/Ton 12.33 22.10 0.00 10.87 45.30
BY-PRODUCT CREDITS (200	5)	(\$1,950)	-9.32
FUEL COST(2005)		\$46,226	221.02
PURCHASED ELECTRICITY	COST(2005)	\$11,396	54.49
PRODUCTION COST SUMMA Fixed 0 & M Variable 0 & M Consumables By-product Credi Fue Purchased Electricity	RY (2005) I I I I I TOTAL PRODUCTION COST	_	\$/Ton \$96.06 \$16.95 \$45.30 (\$9.32) \$221.02 \$54.49 \$424.49
2005 CARRYING CHARGES (<u>Capital)</u> FCR=0.138	_	\$348.97
2005 COST OF HYDROGEN		or \$/kq	\$773.45 \$0.85

Exhibit 45 Case 5 - PWR H₂ Production Plant Capital Investment & Operating Cost Requirement Summary (85% Capacity factor)

This page intentionally left blank

7 CASE 6 - GE ENERGY GASIFIER BASED H₂ PRODUCTION PLANT DESCRIPTION AND RESULTS

Consuming 419,050 lb/hr of Illinois #6 coal, the GE Energy hydrogen production plant produces 50,322 lb/hr of $99.99\% + H_2$. The plant requires an additional 50 MWe of power from another source to meet a total auxiliary load of 125 MWe.

A block flow diagram and associated stream tables for the Case 6 GE Energy gasifier-based H_2 production plant in quench mode are presented in Exhibit 46 and Exhibit 47, respectively.

7.1 Process Description

Case 6 is similar to Case 2 but the gasifier operates in a total quench mode rather than the radiant-quench mode, with the H_2 production similar to Case 5.

Exhibit 46 Case 6 - GE Energy H₂ Production Plant Block Flow Diagram

1	2	3	4	5	6 ^A	7 ^A	8	10	13
0.0094	0.0034	0.0360	0.0320	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001
0.0003	0.0005	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.9965
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0018
0.0104	0.0156	0.0000	0.0000	1.0000	1.0000	1.0000	0.0000	1.0000	0.0014
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.7722	0.9804	0.0140	0.0180	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.2077	0.0000	0.9500	0.9500	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	1.0000
50,677	33,735	178	10,900	9,556	2,589	12,152	0	8,499	19,477
1,462,260	941,410	5,729	350,770	172,146	46,598	218,744	0	153,103	854,918
0	0	0	0	0	372,452	372,452	45,998	0	0
074		00	005		50	00	100	700	050
2/1	55	90	205	60	59	60	429	700	353
225.0	16.4	56.4	1,025.0	1,050.0	14.7	1,050.0	804.7	1,000.0	2,900.0
0.92	0.09	0.21	4.62	62.59				1.66	14.60
28.85	27.01	32.23	4.0∠ 32.18	18.02				18.02	14.00
	1 0.0094 0.0000 0.0000 0.0003 0.0000 0.0104 0.0000 0.7722 0.0000 0.2077 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.462,260 0 271 225.0 0.83 28.85	1 2 0.0094 0.0034 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0104 0.0156 0.0000 0.0000 0.7722 0.9804 0.0000 0.0000 0.7722 0.9804 0.0000 0.0000 0.2077 0.0000 0.2077 0.0000 0.2077 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000 0.0000 250,677 33,735 1,462,260 941,410 0 0 271 55 225.0 16.4 0.83 0.08 28.85 27.91	1 2 3 0.0094 0.0034 0.0360 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.462,260 941,410 5,729 0 0 0 0 225.0 16.4 56.4 0.83 0.08 0.31 28.85 27.91	12340.00940.00340.03600.03200.00000.00000.00000.00000.00000.00000.00000.00000.00030.00050.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.01040.01560.00000.00000.00000.00000.00000.00000.77220.98040.01400.01800.00000.00000.00000.00000.20770.00000.95000.95000.00001.00001.00001.00001.00001.00001.00001.00001.462,260941,4105,729350,770000002715590205225.016.456.41,025.000.830.080.314.6228.8527.9132.2332.18	1 2 3 4 5 0.0094 0.0034 0.0360 0.0320 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0104 0.0156 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000<	1 2 3 4 5 6 ^A 0.0094 0.0034 0.0360 0.0320 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 <t< td=""><td>1 2 3 4 5 6^A 7^A 0.0094 0.0034 0.0360 0.0320 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000</td><td>1 2 3 4 5 6^A 7^A 8 0.0094 0.0334 0.0360 0.0320 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000</td><td>1 2 3 4 5 6^h 7^h 8 10 0.0094 0.0344 0.0360 0.0320 0.0000 0.</td></t<>	1 2 3 4 5 6 ^A 7 ^A 0.0094 0.0034 0.0360 0.0320 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	1 2 3 4 5 6 ^A 7 ^A 8 0.0094 0.0334 0.0360 0.0320 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	1 2 3 4 5 6 ^h 7 ^h 8 10 0.0094 0.0344 0.0360 0.0320 0.0000 0.

Exhibit 47 Case 6 - GE Energy H₂ Production Plant Stream Table

A - Solids flowrate includes coal; V-L flowrate includes water from coal (11.12 wt% moisture)

Note: Streams containing proprietary data are excluded from these stream tables

	14	15	16	17	18	19	20	21
V-L Mole Fraction								
Ar	0.0000	0.0021	0.0000	0.0093	0.0104	0.0000	0.0393	0.0190
CH ₄	0.0000	0.0002	0.0000	0.0000	0.0008	0.0000	0.0031	0.0000
CO	0.0000	0.0044	0.0000	0.0088	0.0064	0.0000	0.0240	0.0000
CO ₂	0.4848	0.5879	0.0000	0.6929	0.0630	0.0000	0.2378	0.0919
COS	0.0003	0.0001	0.0000	0.0004	0.0000	0.0000	0.0000	0.0000
H ₂	0.0000	0.0268	0.0000	0.1027	0.8751	1.0000	0.5287	0.0000
H ₂ O	0.0123	0.0000	0.0000	0.0006	0.0000	0.0000	0.0002	0.1911
H ₂ S	0.4356	0.0486	0.0000	0.0643	0.0000	0.0000	0.0000	0.0000
N ₂	0.0670	0.0011	0.0000	0.1210	0.0442	0.0000	0.1669	0.6785
NH ₃	0.0000	0.3287	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
O ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0196
SO ₂	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	1.0000	1.0000	0.0000	1.0000	1.0000	1.0000	1.0000	1.0000
V-L Flowrate (lb _{mol} /hr)	838	176	41	724	33,953	24,960	8,993	25,986
V-L Flowrate (lb/hr)	32,084	5,874	10,462	26,759	216,725	50,322	166,402	724,426
Solids Flowrate (lb/hr)	0	0	0	0	0	0	0	0
Temperature (°F)	120	450	295	95	70	193	170	280
Pressure (psia)	71.0	113.5	51.0	767.5	678.0	668.0	67.8	14.5
Enthalpy (Btu/lb)								
Density (lb/ft ³)	0.44	0.39		5.77	0.76	0.19	0.19	0.05
Molecular Weight	38.30	33.43		36.94	6.38	2.02	18.50	27.88

Exhibit 47 (continued) Case 6 - GE Energy H2 Production Plant

7.2 Equipment Descriptions

Air Separation Unit

The air separation plant is designed to produce a nominal output of 4,300 tons/day of 95 percent pure O_2 from two ASU production trains. Most of the oxygen is used in the gasifier. A small portion, approximately 70 tons/day, is used in the Claus plant. The air compressor is powered by an electric motor.

Gasifier

This plant utilizes two gasification trains to process a total of 5,000 tons per day of coal. The slurry feed pump takes suction from the slurry run tank, and the discharge is sent to the feed injector of the GEE gasifier. Oxygen from the ASU is vented during preparation for startup and is sent to the feed injector during normal operation. The air separation plant supplies 2,100 tons of 95 percent purity oxygen per day to each gasifier.

The gasifier vessel is a refractory-lined, high-pressure combustion chamber. Coal slurry is transferred from the slurry storage tank to the gasifier with a high-pressure pump. At the top of the gasifier vessel is located a combination fuel injector through which coal slurry feedstock and oxidant (oxygen) are fed. The coal slurry and the oxygen feeds react in the gasifier at about 815 psia at a high temperature (in excess of 2,400°F) to produce syngas.

The syngas consists primarily of hydrogen and carbon monoxide, with lesser amounts of water vapor and carbon dioxide, and small amounts of hydrogen sulfide, carbonyl sulfide, methane, argon, and nitrogen. The heat in the gasifier liquefies coal ash.

Syngas Cooling

Hot syngas and molten solids from the reactor flow downward through a quench region where the syngas is cooled to \sim 430°F. The gas and solidified slag then flow into a water-filled quench chamber. The solids collect in the water sump at the bottom of the gasifier and are removed periodically, using a lock hopper system.

Solids collected in the quench gasifier water sump are removed by gravity and forced circulation of water from the lock hopper circulating pump. Fine material, which does not settle as easily, is removed in the gasification blowdown which is sent to the vacuum flash drum by way of the syngas scrubber.

Syngas Scrubbing

The syngas enters the syngas scrubber and is directed downwards by a dip tube into a water sump at the bottom of the syngas scrubber. Most of the solids are separated from the syngas at the bottom of the dip tube as the syngas goes upwards through the water. From the overhead of the syngas scrubber, the syngas enters the low-temperature gas cooling section for further cooling.

The water removed from the syngas scrubber contains all the solids that were not removed in the quench gasifier water sump. In order to limit the amount of solids recycled to the quench chamber, a continuous blowdown stream is removed from the bottom of the syngas scrubber.

The blowdown is sent to the vacuum flash drum in the black water flash section. The circulating scrubbing water is pumped by the syngas scrubber circulating pumps to the quench gasifier.

The slag handling system removes solids from the gasification process equipment. These solids consist of a small amount of unconverted carbon and essentially all of the ash contained in the feed coal. These solids are in the form of glass, which is non-leaching and fully encapsulates any metals.

Water Gas Shift (WGS) Reactors

The saturated syngas enters the WGS system fully saturated at ~430°F. The raw-gas shift to produce H₂ requires 153,103 lb/hr of steam, fulfilling a vendor-specified steam to dry gas ratio of 1.1. Steam at 700°F and 1,000 psia is added to the syngas, bringing the stream temperature to ~460°F as it enters the WGS reactors. The water gas shift reaction is as follows:

$$CO + H_2O \rightarrow H_2 + CO_2$$

There are a total of three WGS reactors containing proprietary sulfur-tolerant catalyst. Each of these reactor stages is intercooled, bringing the stream temperature down to 450°F before entering the next WGS reactor. The WGS reaction is exothermic and increases the temperature of the syngas stream, though conversion is favored at lower temperatures. Lowering the temperature to 450°F before each stage results in a 98.6% overall conversion of CO.

The WGS reactors also hydrolyzes COS and converts HCN to NH₃, therefore, no dedicated COS hydrolysis reactor is required.

Low Temperature Gas Cooling

Before the raw fuel gas can be treated in the AGR process, it must be cooled to about 100° F. During this cooling through a series of heat exchangers, part of the water vapor condenses. This water, which contains some NH₃, is sent to the wastewater treatment section.

Mercury Removal

Refer to Case 1 in section 2.3 for a description of the Mercury Removal system used in Case 6, since they are similar.

Acid Gas/CO₂ Removal

Case 6 utilizes a multi-stage Selexol process to remove sulfur with ~90% CO₂ capture. The Selexol process treats the stream of synthesis gas to reduce the level of total sulfur (H₂S and COS) to no more than 30 ppm prior to it being sent to the PSA, while concentrating the CO₂ for compression and capture. A recycle stream of acid gas from the sulfur recovery unit (SRU) is also treated. An acid gas stream that contains ~50 percent sulfur is produced.

High sulfur, shifted gas is sent to the first absorber, which is labeled the H_2S absorber. Here it contacts a "CO₂-loaded" solvent, which enters at the top of the tower. In the H_2S absorber, H_2S , COS, CO₂, and other gases such as hydrogen, are transferred from the gas phase to the liquid phase. The treated gas exits the absorber and is sent to the CO₂ absorber where the gas first contacts a "semi-lean" solvent in the middle stages of the absorber. In these stages of the CO₂ absorber, the large majority of the CO₂ is transferred from the gas phase to the liquid phase. Fully regenerated, lean solvent enters the upper stages of this CO₂ absorber, removing additional

 CO_2 from the gas stream. The gas then leaves the CO_2 absorber for treatment in the Pressure Swing Adsorption system to concentrate the H₂. The solvent from the CO_2 absorber is split and a portion is sent to the H₂S absorber as the "CO₂-loaded" solvent. The remaining portion of the solvent is passed through a series of flash drums which transfer the absorbed CO_2 from the liquid phase into the gas phase for compression. The remaining solvent is sent to the mid-stages of the CO_2 absorber as the "semi-lean" solvent to absorb the majority of gas phase CO_2 .

The solvent stream from the H_2S absorber is termed rich solvent and is sent to the H_2S concentrator, where portions of the CO₂, CO, H₂, and other gases are stripped from the solvent. Nitrogen from the ASU is used as the stripping medium. A portion of the overhead gas is recycled back to the H_2S absorber for further treatment. The partially regenerated solvent exits the H_2S concentrator and is sent to the stripper, where the solvent is fully regenerated. All gases are transferred from the liquid phase to the gas phase in this stripper and sent to the Sulfur Recovery System (SRS). The Tail gas from the SRS is recycled back to the H_2S absorber.

Sour Water Stripper

Refer to Case 1 in section 2.3 for a description of the Sour Water Stripper used in Case 6, since they are similar.

Sulfur Recovery System

The sulfur recovery unit is a Claus bypass-type sulfur recovery unit utilizing oxygen instead of air. The Claus plant produces molten sulfur by reacting approximately a third of the H_2S in the feed to SO_2 , then reacting the H_2S and SO_2 to sulfur and water. Utilizing oxygen instead of air in the Claus plant reduces the overall cost of the sulfur recovery plant. The sulfur plant will produce approximately 113 long tons of elemental sulfur per day. Feed for this case consists of acid gas from both acid gas cleanup units and a vent stream from the sour water stream in the gasifier section. Tail gas from the Claus unit, after hydrogenation, is recycled to the Selexol unit. The combination of Claus technology and tail gas recycle will result in an overall sulfur recovery exceeding 99 percent.

Pressure Swing Adsorption System

The H₂-rich gas from the Selexol unit enters multiple, parallel beds of proprietary adsorbent. These beds are used in a semi-batch adsorption/desorption sequence for continuous H₂ production. The H₂-rich stream is fed at high pressure (~680 PSI) to force contaminant adsorption onto the beds. The H₂ does not adsorb as strongly as the contaminant compounds, thus, can exit the beds at concentrations in excess of 99.99% before the beds become saturated.

Desorption occurs by depressurizing the beds to ~70 PSI and back-flushing them with H_2 product. This low pressure flush purges the contaminants consisting of CO, CO₂, N₂, and CH₄ from the bed in a stream of ~50% H₂. Overall H₂ recovery for the PSA system is designed to be 84%.

Waste Heat Boiler

Off-gas from the PSA unit is combusted with excess air in a waste heat boiler to provide heat for steam generation. A conventional natural gas-fired boiler must be retrofitted with syngas burners to provide stable combustion with low NOx generation.

Steam Turbine

A non-reheat steam turbine is used to expand the excess $1,200 \text{ psia}/1000^{\circ}\text{F}$ steam generated in the Waste Heat Boiler to approximately 2" Hga (the condenser backpressure dictated in the design basis). The power output of the steam turbine does not fully off-set the auxiliary power demand of the plant, which was a design decision made in the interest of maximizing the efficiency of H₂ production.

7.3 Performance Results

Utilizing 419,050 lb/hr of Illinois #6 coal, the GE gasifier hydrogen plant produces 50,322 lb/hr of 99.99% + H_2 . The steam produced by the plant generates 75 MWe for internal use. The plant requires an additional 50 MWe to meet a total auxiliary load of 125MWe.

The performance results are summarized in Exhibit 48.

POWER SUMMARY – 100 Percent Load								
Plant Output	s, kwe							
Steam Turbine Power	75.050	kWe						
Total	75,050	kWe						
Auxiliary Load	·	-						
Coal Handling	540	kW _e						
Coal Milling	1,100	kW _e						
Slag Handling	330	kW _e						
Air Separation Unit Auxiliaries	1,000	kW _e						
ASU Main Air Compressor	63,070	kW _e						
Oxygen Compressor	10,150	kW _e						
CO ₂ Compression	38,100	kW _e						
Tail Gas Compression	1,900	kW _e						
Boiler Air Compressor	320	kW _e						
Slurry Water Pump	240	kW _e						
Quench Pumps	180	kW _e						
Condensate Pump	230	kW _e						
Scrubber Pumps	300	kW _e						
WGS Makeup Pump	770	kW _e						
Cooling Tower Fans	460	kW _e						
Selexol Unit Auxiliaries	2,700	kW _e						
Claus Plant Auxiliaries	200	kW _e						
Miscellaneous Balance-of-Plant	3,000	kW _e						
Transformer Losses	230	kW _e						
Total	124,820	kW _e						
Plant Performance								
Net Plant Power	-49,770	kW _e						
H ₂ (99.99%) Production	50,322	lb/hr						
Coal Feed Flowrate	419,050	lb/hr						
Thermal Input ¹	1,432,718	kWt						
Condenser Duty	489	MMBtu/hr						

Exhibit 48 Case 6 - GE Energy H₂ Production Plant Performance Summary

1 - HHV of Illinois #6 11.12% Moisture Coal is 11,666 Btu/lb

7.4 Economic Results

The capital and operating costs estimate results for Case 6 are shown in Exhibit 49 through Exhibit 53. The Total Plant Cost with a dual gasifier train is estimated to be 920,000 \$/Ton H_2 and 982,000 \$/Ton H_2 for a plant with a redundant three gasifier train. At 94% and 90% capacity factors, the Levelized Cost of Hydrogen for the redundant train arrangements are 975 and 1,001 \$/Ton H_2 , respectively. At 85% capacity factor, the LCOH for the dual train arrangement is 997 \$/Ton H_2 .

	Client:	DEPARTMEN	T OF ENER	GY				Report Date:	25-Mar-06	
	Project:	Rocketdyne P	ower Plant S	Studies						
					TOTAL PLA		MARY			
	Case:	Case 6 - GE G	asifier, H2 C	Coprod, Seque	est, Boiler			2005		
	Plant Size:	603.86	H2 IPD	Estimat	te Type:	Conceptual	Cost Base ((January) 2005	; \$x1000	
Acct	Item/Description	Equipment	Material	La	bor	Bare Erected		Contingencies	TOT. PLA	
1		0.017	1 / 26	6 205		16 / 30	1 644	2 616	v ¢21.609	φ/1FDH2 Φ26
		13 600	6 1 4 0 0	0,295	640	20 756	0.044	3,010	\$21,030 \$25,552	φ30 Φ50
		12,000	0,140	9,271	049	28,756	2,010	5,921	\$35,553	\$09 #47
3	FEEDWATER & MISC. BOP SYSTEMS	2,555	1,917	2,760	193	7,425	/43	1,915	\$10,083	\$17
4 4.1 4.2	GASIFIER & ACCESSORIES Quench Gasification System Syngas Quench System (w/Gasifier-\$)	30,915 w/4.1	9,985	17,923 w/4.1	1,255	60,078	6,008	6,609	\$72,694	\$120
4.3	ASU/Oxidant Compression	76,473		w/equip.		76,473	7,647	4,206	\$88,326	\$146
4.4-4.9	Other Gasification Equipment	15,372	15,498	18,076	1,265	50,212	5,021	6,218	\$61,450	\$102
- I	Subtotal 4	122,760	25,483	35,999	2,520	186,763	18,676	17,032	\$222,471	\$368
5	GAS & CLEANUP AND PIPING	66,123	3,800	33,919	2,374	106,216	10,622	20,710	\$137,548	\$228
6 6.1 6.2-6.9	COMBUSTION TURBINE/ACCESSORIES Combustion Turbine Generator Combustion Turbine Accessories Subtotal 6									
7	BOILER, DUCTING & STACK									
7.1	Gas-Fired Steam Boiler	2,698		719	50	3,467	347	572	\$4,386	\$7
7.2-7.9	SCR System, Ductwork and Stack	601	701	888	62	2,251	225	455	\$2,932	\$5 #40
		3,290	701	1,007	113	5,719	512	1,027	\$7,318	\$1Z
8		0.495		1 070	00	10.945	1.005	1 102	¢12 102	¢00
82.89	Turbine Plant Auxiliaries & Steam Pining	2 587	225	1,272	09 136	4 891	489	934	\$6,314	φ22 \$10
0.2-0.0	Subtotal 8	12,072	225	3,214	225	15,737	1,574	2,127	\$19,437	\$32
9	COOLING WATER SYSTEM	2,952	1,781	2,803	196	7,732	773	1,568	\$10,073	\$17
10	ASH/SPENT SORBENT HANDLING SYS	11,119	6,223	10,575	740	28,658	2,866	3,392	\$34,916	\$58
11	ACCESSORY ELECTRIC PLANT	7,354	3,313	8,211	575	19,453	1,945	3,628	\$25,025	\$41
12	INSTRUMENTATION & CONTROL	2,783	399	1,984	139	5,305	530	819	\$6,654	\$11
13	IMPROVEMENTS TO SITE	2,000	1,489	5,290	370	9,150	915	3.019	\$13,084	\$22
14	BUILDINGS & STRUCTURES		3,618	4,385	433	8,436	844	2,321	\$11,601	\$19
	TOTAL COST	\$253,922	\$56,582	\$126,315	\$8,968	\$445,787	\$44,579	\$65,096	\$555,461	\$920

Exhibit 49 Case 6 - GE Energy H₂ Production Total Plant Capital Costs with Dual Gasifier Train

	Client:	DEPARTMEN	IT OF ENER	:GY				Report Date:	25-Mar-06	
	Project:	Rocketdyne P	ower Plant S	Studies						
					TOTAL PLA		MARY			
	Case:	Case 690 -GE	Gasifier, H	2 Coprod, Sec	quest, Boiler	- · ·			* 4000	
	Plant Size:	603.86	H2 IPD	Estima	te Type:	Conceptual	Cost Base (Ja	inuary) 2005	; \$X1000	
Acct	Item/Description	Equipment	Material	La	bor	Bare Erected		Contingencies	TOT. PLA	
1		0.017	1 / 26	6 205	1/11	16 / 30	1 644	2 616	v ¢21.609	φ/1FDH2 Φ26
		12 699	6 1/9	0,295	640	29 756	2.876	3 0 2 1	\$21,030 \$35,553	φ30 ¢50
		12,000	4 047	3,271	402	28,750	2,070	1.045	\$35,555	φJ9 Φ47
	FEEDWATER & MISC. BOP SYSTEMS	2,000	1,917	2,760	193	7,425	143	1,915	\$10,083	\$17
4	GASIFIER & ACCESSURIES	16 373	1/1 078	76 884	1 887	90 117	9.012	0.013	\$109.042	¢181
42	Syngas Scrubber System (w/Gasifier-\$)	w/4 1	14,370	w/4 1	1,002	30,117	3,012	3,313	\$103,042	ψ101
4.3	ASU/Oxidant Compression	76,473		w/equip.		76,473	7,647	4,206	\$88,326	\$146
4.4-4.9	Other Gasification Equipment	15,372	15,962	18,386	1,287	51,006	5,101	6,392	\$62,499	\$103
	Subtotal 4	138,218	30,939	45,270	3,169	217,596	21,760	20,511	\$259,867	\$430
5	GAS & CLEANUP AND PIPING	66,123	3,800	33,919	2,374	106,216	10,622	20,710	\$137,548	\$228
6 6.1 6.2-6.9	COMBUSTION TURBINE/ACCESSORIES Combustion Turbine Generator Combustion Turbine Accessories Subtotal 6									
7	BOILER, DUCTING & STACK Gas-Fired Steam Boiler	2,698	704	719	50	3,467	347	572	\$4,386	\$7
7.2-7.9	SCR System, Ductwork and Stack Subtotal 7	3 298	701 701	888 1.607	62 113	2,251	225 572	455 1 027	\$2,932 \$7,318	\$5 \$12
8		0,200		1,001			0.12	1,021	¢.,c.c	¥12
8.1	Steam TG & Accessories	9,485		1,272	89	10,845	1,085	1,193	\$13,123	\$22
8.2-8.9	Turbine Plant Auxiliaries & Steam Piping	2,587	225	1,943	136	4,891	489	934	\$6,314	\$10
	Subtotal 8	12,072	225	3,214	225	15,737	1,574	2,127	\$19,437	\$32
9	COOLING WATER SYSTEM	2,952	1,781	2,803	196	7,732	773	1,568	\$10,073	\$17
10	ASH/SPENT SORBENT HANDLING SYS	11,119	6,223	10,575	740	28,658	2,866	3,392	\$34,916	\$58
11	ACCESSORY ELECTRIC PLANT	7,354	3,313	8,211	575	19,453	1,945	3,628	\$25,025	\$41
12	INSTRUMENTATION & CONTROL	2,783	399	1,984	139	5,305	530	819	\$6,654	\$11
13	IMPROVEMENTS TO SITE	2,000	1,489	5,290	370	9,150	915	3,019	\$13,084	\$22
14	BUILDINGS & STRUCTURES		3,618	4,385	433	8,436	844	2,321	\$11,601	\$19
	TOTAL COST	\$269,379	\$62,038	\$135,586	\$9,617	\$476,621	\$47,662	\$68,575	\$592,858	\$982

Exhibit 50 Case 6 - GE Energy H₂ Production Total Plant Capital Costs with Redundant Gasifier Train

TITLE/DEFINITION Case: Plant Size: Fuel(type): Design/Construction: TPC(Plant Cost) Year: Capacity Factor:	Case 694 -GE Gasifier, H2 Coprod, Sequest, B 603.86 TPD H2 Illinois #6 3.5 (years) 2004 94.0%	oiler Heat Rate Fuel Cost: BookLife: TPI Year: CO2 Removed	3/27/2006 N/A Btu/kWh 1.27 (\$/MMBtu) 20 (years) 2010 (Jan.) (TPD)	
CAPITAL INVESTMENT Process Capital & Facilities Engineering(incl.C.M.,H.O.& Fee) Process Contingency Project Contingency		\$x1000 476.621 47.662 0 0 	\$/TPD H2 789.28 78.93 0.00 113.56	
	TOTAL PLANT COST(TPC) TOTAL CASH EXPENDED \$592,858 AFDC 44,343	592,858	981.77	
	TOTAL PLANT INVESTMENT(TPI)	637,200	1,055.21	
Royalty Allowance Preproduction Costs Inventory Capital Initial Catalyst & Chemicals(w/equ	.ip.)	1,000 17,113 6,612	1.66 28.34 10.95	
Land Cost			0.92	
	TOTAL CAPITAL REQUIREMENT(TCR)	\$662,480	1,097.07	
OPERATING & MAINTENANC Operating Labor Maintenance Labor Maintenance Material Administrative & Support Labor	<u>E COSTS(2005)</u>	\$x1000 4,625 6,734 12,760 3,492	<u>\$/Ton H2</u> 22.32 32.50 61.59 16.86	
	TOTAL OPERATION & MAINTENANCE(2005)	\$27,612	133.27	
	FI×ED O & M (2005)	\$25,955	125.27	
	VARIABLE O & M (2005)	\$1,657	8.00	
CONSUMABLE OPERATING (Water Chemicals Other Consumables	COSTS, LESS FUEL(2005)	<u>\$×1000</u> 3,020 5,320	\$/Ton H2 14.57 25.68 0.00	
Waste Disposal		2,882	13.91	
	TOTAL CONSUMABLES(2005)	\$11,221	54.16	
BY-PRODUCT CREDITS (200	5)	(\$2,154)	(10.40)	
FUEL COST(2005)		\$51,121	246.74	
PURCHASED ELECTRICITY (COST(2005)	\$22,848	110.28	
PRODUCTION COST SUMMA Fixed O & M Variable O & M Consumables By-product Credir Fue Purchased Electricity	RY (2005) I I I I TOTAL PRODUCTION COST	-	<u>\$/Ton H2</u> 125.27 8.00 54.16 (10.40) 246.74 110.28 534.05	
2005 CARRYING CHARGES	Capital)		441.26	
2005 COST OF HYDROGEN	FCK=V.138	= or \$/ka	975.31 \$1.07	

Exhibit 51 Case 6 - GE Energy H₂ Production Plant Capital Investment & Operating Cost Requirement Summary (94% Capacity factor)

TITLE/DEFINITION Case: Plant Size: Fuel(type): Design/Construction: TPC(Plant Cost) Year: Capacity Factor:	Case 690 -GE Gasifier, H2 Coprod, Sequest, 603.86 TPD H2 Illinois #6 3.5 (years) 2004 90.0%	Boiler Heat Rate Fuel Cost: BookLife: TPI Year: CO2 Removed	3/27/2006 N/A Btu/kWh 1.27 (\$/MMBtu) 20 (years) 2010 (Jan.) (TPD)	
CAPITAL INVESTMENT Process Capital & Facilities Engineering(incl.C.M.,H.O.& Fee) Process Contingency Project Contingency		\$x1000 476,621 47,662 0 68,575	\$/TPD H2 78928 78.93 0.00 113.56	
	TOTAL PLANT COST(TPC)TOTAL CASH EXPENDED\$592,857AFDC44,343	592,858 8 3	981.77	
Royalty Allowance Preproduction Costs Inventory Capital Initial Catalyst & Chemicals(w/equ	TOTAL PLANT INVESTMENT(TPI)	637,200 1,000 17,073 6,391	1.055.21 1.66 28.27 10.58	
Land Cost		\$662.219	1.096.64	
OPERATING & MAINTENANC Operating Labor Maintenance Labor Maintenance Material Administrative & Support Labor	E COSTS(2005)	\$x1000 4,625 6,734 12,760 3,492	\$/Ton H2 23.32 33.94 64.33 17.61	
	TOTAL OPERATION & MAINTENANCE(2005)	\$27,612	139.19	
	FI×ED O & M (2005)	\$24,850	125.27	
	VARIABLE O & M (2005)	\$2,761	13.92	
CONSUMABLE OPERATING (Water Chemicals Other Consumables Waste Disposal	COSTS, LESS FUEL(2005)	\$x1000 2,891 5,093 0 2,759	\$/Ton H2 14.57 25.68 0.00 13.91	
	TOTAL CONSUMABLES(2005)	\$10,743	54.16	
BY-PRODUCT CREDITS (200	5)	(\$2,062)	(10.40)	
FUEL COST(2005)		\$48,946	246.74	
PURCHASED ELECTRICITY	COST(2005)	\$21,876	110.28	
PRODUCTION COST SUMMA Fixed O & M Variable O & M Consumables By-product Credir Fue Purchased Electricity	RY (2005) I I I I I TOTAL PRODUCTION COST		<u>\$/Ton H2</u> 125.27 13.92 54.16 (10.40) 246.74 110.28 539.97	
2005 CARRYING CHARGES	Capital)		460.69	
2005 COST OF HYDROGEN	100-0.100	= or \$/ka	1,000.66 \$1.10	

Exhibit 52 Case 6 - GE Energy H₂ Production Plant Capital Investment & Operating Cost Requirement Summary (90% Capacity factor)

TITLE/DEFINITION	Case 6-GE Gasifier, H2 Conrod, Soquest, Boilor			
Plant Size: Fuel(type): Design/Construction: TPC(Plant Cost) Year: Capacity Factor:	Case 0 - 42 Gasilier, 112 Coprod, Sequest, Boil 603.86 TPD H2 Illinois #6 3.5 (years) 2004 85.0%	Heat Rate Fuel Cost: BookLife: TPI Year: CO2 Removed	N/A Btu/kWh 1.27 (\$/MMBtu) 20 (years) 2010 (Jan.) (TPD)	
CAPITAL INVESTMENT Process Capital & Facilities Engineering(incl.C.M.,H.O.& Fee) Process Contingency Project Contingency		\$x1000 445,787 44,579 0 65,096	\$/TPD H2 738.22 73.82 0.00 107.80	
	TOTAL PLANT COST(TPC) TOTAL CASH EXPENDED \$555.461 AFDC 41.546	555,461	919.85	
	TOTAL PLANT INVESTMENT(TPI)	597,007	988.64	
Royalty Allowance Preproduction Costs Inventory Capital Initial Catalyst & Chemicals(w/equ	iip.)	1,000 16,084 6,081	1.66 26.63 10.07	
Land Cost			0.92	
	TOTAL CAPITAL REQUIREMENT(TCR)	\$620,727	1,027.92	
OPERATING & MAINTENANC Operating Labor Maintenance Labor Maintenance Material Administrative & Support Labor	<u>E COSTS(2005)</u>	\$x1000 4,625 6,309 11,955 3,492	\$/Ton H2 24.69 33.67 63.81 18.64	
	TOTAL OPERATION & MAINTENANCE(2005)	\$26,382	140.82	
	FI×ED O & M (2005)	\$22,425	119.70	
	VARIABLE O & M (2005)	\$3,957	21.12	
CONSUMABLE OPERATING C Water Chemicals Other Consumables Waste Disposal	COSTS, LESS FUEL(2005)	\$x1000 2,579 4,559 0 2,606	\$/Ton H2 13.76 24.34 0.00 13.91	
	TOTAL CONSUMABLES(2005)	\$9,744	52.01	
BY-PRODUCT CREDITS (200	5)	(\$1,948)	(10.40)	
FUEL COST(2005)		\$46,226	246.74	
PURCHASED ELECTRICITY (COST(2005)	\$20,660	110.28	
PRODUCTION COST SUMMAI Fixed O & M Variable O & M Consumables By-product Credit Fue Purchased Electricity	RY (2005)	-	§/Ton H2 119.70 21.12 52.01 (10.40) 246.74 110.28 539.45	
2005 CARRYING CHARGES (Capital)		457.22	
2005 COST OF HYDROGEN	FCR=0.138	= or \$#a	996.67 \$1.10	

Exhibit 53 Case 6 - GE Energy H₂ Production Plant Capital Investment & Operating Cost Requirement Summary (85% Capacity factor)

8 SUMMARY

This report compares six gasifier-based plant configurations. The results for each case are summarized in Exhibit 54. All results should be considered preliminary and dictated in large part by the selected design basis. It should also be noted that gasifier performance and cost data for the PWR gasifier was provided by the vendor and that RDS did not apply Process Contingency costs to the data provided. Since the design is conceptual and there has not yet been pilot plant or commercial operation, the performance and cost of the PWR gasifier should be considered preliminary.

Cases 1 and 2 reflect IGCC plants using either a PWR or a GE Energy gasifier respectively in both radiant quench heat recovery mode and similar plant configurations. Case 1 (PWR) shows a 3% net plant efficiency improvement over Case 2 (GE). In addition to the efficiency improvement, Case 1 costs more than \$130 million less (\$147/kWe) and shows an 8% reduction in the levelized cost of electricity on a common capacity factor. The difference is directly attributable to reduction in gasifier costs, reduction in thermal input to the plant, increased gasifier efficiency (resulting in lower oxygen requirements) and a fairly significant increase in plant availability without a spare gasifier.

Cases 3 and 4 compare PWR and Shell gasifiers in syngas quench/convective heat exchange mode. These cases exhibit more similar plant performance than PWR and GE since both gasifiers are dry coal-fed whereas the GE Energy gasifier in Case 2 is a slurry-fed gasifier (which is inherently less efficient). The net plant efficiency for the PWR gasifier plant is 0.9% higher than the comparable Shell gasification plant. In addition, there is a projected \$205 million (\$308/kWe) reduction in total plant cost for the PWR IGCC plant, which correlates to a 15% and 20% reduction in the levelized cost of electricity for a capacity factor of 85% and 94%, respectively. This is primarily attributable to a \$94 million reduction in gasifier island costs associated with a less expensive PWR gasifier/syngas cooler arrangement but also attributable to a \$66 million reduction in coal handling, preparation, and feed costs associated with using a dry coal feed pump instead of a dry coal lockhopper system. The application of a dry feed pump to the Shell gasifier can have similar cost benefits. A prior study has indicated that a capital cost reduction of about \$100/kW can be taken from the feed system.[10]

Cases 5 and 6 compare the H_2 production capabilities of comparably sized (by thermal input) gasification plants based on the PWR and GE Energy gasifiers, respectively. The H_2 production of the Case 5 plant was 56,179 lb/hr while the Case 6 plant produced 50,322 lb/hr. This is partially attributable to the improved carbon conversion of the PWR gasifier and the fact that the PWR gasifier is dry coal-fed, both of which allow for increased availability of CO in the syngas that can be shifted in the WGS reactors, yielding increased amounts of H_2 as a result. The steam turbine power output of the PWR case is greater than that of the GE Energy case due to the reduced steam demand of the PWR WGS system and due to the increased CO in the saturated syngas which generates more recoverable WGS reaction heat. Case 5 costs more than \$83 million less and shows a 23% reduction in the levelized cost of hydrogen on a common capacity factor.

The following overall conclusions can be reached from this study:

- Based on current expectations, the PWR gasifier system presents conversion efficiencies which are significantly higher than conventional gasifiers. However, future pilot studies must be performed to verify these expectations.
- Based on inclusion of PWR-PWR estimates, the capital and operating costs of the PWR gasifier plant are significantly lower than for conventional gasifiers.
- The PWR gasifier system can offer significantly lower production costs for both power and hydrogen relative to conventional gasifier systems.

Exhibit 54			
Performance Summary and Economic Analysis Results			

	Case 1 PWR Radiant Quench	Case 2 GE Energy Radiant Quench	Case 3 PWR Convective	Case 4 Shell Convective	Case 5 PWR H ₂ Plant	Case 6 GE Energy H ₂ Plant
Performance						
Gas Turbine Power, MW _e	464.0	464.0	464.0	464.0	None	None
Sweet Gas Expander, MW _e	11.8	11.9	10.9	None	None	None
Steam Turbine Power, MW_{e}	230.7	282.2	239.9	270.4	85.9	75.0
Gross Power Output, MW _e	706.5	758.1	714.8	734.4	85.9	75.0
Auxiliary Power Load, MW_e	101.3	123.2	101.1	109.8	116.5	124.8
Net Power Output, MW _e	605.2	634.8	613.7	624.6	(30.6)	(49.8)
Net Plant Efficiency (HHV)	42.2%	39.2%	42.9%	42.0%	68.1%	59.4%
Net Plant Heat Rate, Btu/kWh HHV	8,078	8,699	7,957	8,130	N/A	N/A
Thermal Input, MW _t	1,433	1,619	1,431	1,488	1,433	1,433
Consumables/Products						
Coal Feed Flowrate, lb/hr	419,045	473,379	418,574	435,161	419,050	419,050
Gasifier Oxidant (95% O ₂), lb/hr	294,706	396,246	294,374	337,137	294,709	350,770
Hydrogen Product, lb/hr	None	None	None	None	56,179	50,322
Sulfur Product, lb/hr	10,452	11,839	10,414	10,891	10,478	10,462
Economics						
85% Capacity Factor						
Total Plant Cost, \$x1000	838,323	972,345	743,294	948,732	471,950	555,461
Total Plant Cost, \$/kW	1,385	1,532	1,211	1,519	N/A	N/A
LCOE, mills/kWh	48.9	53.4	44.6	52.8	\$0.85/kg	\$1.10/kg
90% Capacity Factor						
Total Plant Cost, \$x1000	838,323	1,057,235	743,294	1,045,428	471,950	592,858
Total Plant Cost, \$/kW	1,385	1,665	1,211	1,674	N/A	N/A
LCOE, mills/kWh	46.9	54.3	42.8	54.2	\$0.82/kg	\$1.10/kg
94% Capacity Factor						
Total Plant Cost, \$x1000	838,323	1,057,235	743,294	1,045,428	471,950	592,858
Total Plant Cost, \$/kW	1,385	1,665	1,211	1,674	N/A	N/A
LCOE, mills/kWh	45.4	52.5	41.5	52.5	\$0.80/kg	\$1.07/kg

A – Total Plant Costs for Cases 2, 4 and 6 at 90% and 94% CF in this table include spare gasification trains

B – LCOE is Levelized Cost of Electricity. Costs for a spare gasifier were added to Cases 2 and 4 for 94% CF data.

C – Case 5 & 6 show Total Plant Cost of Hydrogen in \$/kg of H₂/day and Levelized Cost of Hydrogen in \$/kg H₂.

9 REFERENCES

- 1 K. M. Sprouse in "Modeling Pulverized Coal Conversion in Entrained Flows", *AIChE J.*, 26(6), 964 (1980)
- 2 K.M. Sprouse and M.D. Schuman, "Devolatilization and Gasification Kinetics of Pulverized Coal Particles," *PWR Supporting Document N001TI000085*-Proprietary (1981
- 3 Oberg et al., "Coal Liquefaction Under High-Mass Flux and Short-Residence-Time Conditions", *Amer. Chem. Soc.*, Div of Fuel Chem Preprints, 22, No. 2, 185 (1977)
- 4 Niksa et al., *Progress in Energy and Combustion Science*, 29, 425 (2003) and *Progress in Energy and Combustion Science*, 30, 679 (2004)
- 5 Market-Based Advanced Coal Power Systems, Parsons report No. 10198, prepared for DOE Office of Fossil Energy, May 1998.
- 6 40 CFR 60, Subpart Da Standards of Performance for Electric Utility Steam Generating Units for Which Construction Commenced after September 18, 1978
- 7 US EPA Green Book Nonattainment Area Map, <u>http://www.epa.gov/oar/oaqps/greenbk/mapnpoll.html</u>
- 8 US EPA Technology Transfer Network, Clean Air Technology Center, RACT/BACT/LAER Clearing house, <u>http://cfpub.epa.gov/rblc/cfm/facdetl.cfm?facnum=24570</u>
- 9 Simbeck, D. R., N. Korens, F.E. Biasca, S. Vejtasa, R.L. Dickenson, Coal Gasification Guidebook: Status, Applications, and Technologies, SFA Pacific, Mountain View, CA, 12/1993.
- 10 Analysis of Stamet Pump for IGCC Applications, Topical Report, Parsons report prepared for National Energy Technology Laboratory, July 2005.