B&W and Black Hills Corporation: Oxy-Fuel Demonstration Project

Project Objectives

- Establish technical and economic viability of a Near-Zero Emissions (SO₂, NO_x, Hg and PM) plant for pulverized coal-fired power with CO₂ capture
- Safely capture, compress and permanently store large volumes of CO₂ in deep saline/geologic formations or use for enhanced oil recovery
- Build knowledge to make informed CO₂ policy decisions for coal-based power plants
- Demonstrate long-term viability of coal for electric power generation, since coal is one of our nation's and Wyoming's most abundant natural resources
- Develop a public education program regarding transport and permanent underground storage of large volumes of CO₂

B&W and Black Hills: Project Overview

- 100MWe Oxy-fuel pulverized coal greenfield plant located in Campbell County, Wyoming
- Application submitted to the DOE for CCPI-3
- Plant in-service by 2016
- Project Team:
 - Black Hills Corporation, host utility
 - The Babcock & Wilcox Company
 - Air Liquide Engineering and Construction
 - Battelle, Pacific Northwest Division

Black Hills Demonstration Project											
Milestone	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8	Year 9	Yeat 10	Year 11
Selection	İτ ,										
Award	*										
Engineering											
NEPA and Permitting											
Procurement											
Installation											
Commissioning and Startup											
Test Period											
Monitoring											

Oxy-Fuel Demonstration: Technology Readiness

- 5 MBtu/hr small pilot testing completed 2002
- 30 MWth large pilot test completed 2008
 - Burner designs, Process controls, Emissions
- Computer modeling and simulation validated
- Pulverized coal Oxy-combustion Power Plant study (DOE/NETL-2007/1291)
- Bottom-up Integration Study with ASU & CPU in 2008
- ASU efficiency optimization program completed in 2008
- CPU pilots in operation at Lacq and Callide (2008-2011)

Project Scope and Technical Details

- Pulverized coal fueled boiler with 2400 PSI/1050F/1050F steam cycle
- Air Separation Unit (ASU)
- Compression and Purification Unit (CPU)
- 100 MWe net electric output
- Heat integration of ASU/CPU w/ steam cycle
- Near Zero Emissions Plant (NZEP) for SO₂, NO_x, PM and Hg
- Low raw water usage with dry cooling
- High altitude operation
- Zero Liquid Discharge (ZLD)
- Mine-mouth site using low-rank sub-bituminous Powder River Basin coal
- 1 million tons/yr CO₂ storage
- Use CO₂ for EOR or deep saline storage

Comparison of Plant Air Emissions

- Emissions from Oxy-Fuel Demonstration Plant will be well below practical measurement limits
- CO₂ scrubber SO_x and NO_x emissions depend on specific CO₂ capture solvent requirements
- Oxy SCPC emissions are well below IGCC and CO₂ Scrubbing

IGCC from DOE/NETL-2007/1281 Report

Learning from Demonstration

- Early plants are typically small scale.
- Focus is on learning, not operating efficiency
- Economic and performance benefits occur with scale-up
- Early adopters enter at commercial scale and cost
- Maturity and larger plant size will continue to reduce costs

Range of uncertainty shown due to geography (local costs), fuels, and storage reservoir characteristics

Source: McKinsey & Company CCS: "Assessing the Economics," 9/22/08