

McIlvaine Hot Topics

Greenhouse Gas Strategies

Block Andrews, P.E.

Strategic Environmental Solutions Director Burns & McDonnell

February 24, 2010

 What is driving Greenhouse Gas Reductions?

• What solutions are we seeing?

• What are the challenges to reductions?

What is driving Greenhouse Gas Reductions?

Climate Change Drivers

• Legislation:

- New source carbon capture requirement
- Cap and trade
- Nationwide RPS/energy efficiency
- Regulation: EPA endangerment finding/tailoring rule
- Legal: Court cases
- Regional/state/city: Climate initiatives
- Financial: Carbon principles, SEC, insurance
- Reputation: Corporate Sustainability Reports

Climate Change Policies

- Cap and Trade
- Cap and Dividend
- Carbon tax

- Command & Control BACT
 - Fuel Switch/low carbon sources
 - Efficiency improvements
 - Carbon capture/sequestration
 - Offsets

What solutions/challenges are we seeing?

Cost Abatement

THE COST CURVE PROVIDES A "MAP" OF ABATEMENT OPPORTUNITIES

Cost of abatement, 2030, €/tCO2e*

Source: McKinsey and Vattenfall analysis

Reducing GHG footprint

- System level
 - Nuclear
 - Renewables
 - Gas
 - Demand Side Management
 - Smart Grid
 - Offsets
- Plant level
 - Repowering with Natural Gas/Biomass
 - Co-firing Biomass
 - Energy efficiency
 - Carbon Capture/Sequestration
 - By-products used by others
 - Algae

Plant level GHG applications

What major GHG reductions are we seeing at the Plant level?

Dispatchable source

Meets RPS
Carbon neutral

Site specific

- Fuel availability

• Cost

 Likely strategy for meeting RPS/GHG legislation
 No grid instability issues

- Fuel feed systems
- Additional truck traffic
- Retrofit technology uncertainty
- Regulatory uncertainty
- Fuel supply longevity
- Fuel impacts on boiler/AQCS
- On-site fuel storage

McDonnell SINCE 1898 Supply Side Efficiency

- Replace Outdated Generation Technology
 - Combined Cycle Gas Turbine (CCGT)
 - IGCC
 - Supercritical Coal
- Retrofit Existing Generation Fleet
 - Turbine Upgrades
 - VFDs ID fans, etc.
 - Motor Efficiency
- Combined Heat & Power
 - Integrated facilities

New Coal Efficiency Opportunity

Coal Capture Technologies

- Economically feasible if diesel > \$4/gal
- 500 acres needed for up to 2% CO₂-capture for 400 MW plant
- 21 CO₂-enhanced algae strains available
- In theory, 10 million acres to supply all U.S. transportation fuels (if all ICE's ran on biodiesel)

Median Sized States

(Total land area needed to displace petroleum transport fuel shown in black)

Algae Farming Methods Outdoor Ponds and Raceways

<u>Burns &</u> McDonnel

SINCE 1898

Seambiotic Open Algae Pond - Israel

Solix – CO State University Test Site

BioPetroleum's Pilot Facility on the Big Island of Hawaii

Midwest Research Inst.- FLD Raceway

Emerging Capture Technologies

Post-Combustion

- Doosan/HTC PureEnergy Amine
- Alstom Chilled Ammonia
- Powerspan ECO₂
- MHI KS-1 Amine
- Fluor FG+SM
- Shell/CanSolv Amine
- Alstom/Dow Amine
- Aker Amine
- Siemens Amino Acid

Oxy-Combustion

- IHI (Air Liquide)
- Doosan-Babcock (Air Products)
- Foster Wheeler (Praxair)
- Alstom (Linde)
- B&W (Air Liquide)

Carbon Capture Plant Impact

maintenance)

Case Study of 800 MW PC Post Combustion Capture

Heat Input:	No Change
Steam Extraction:	(13% of NPO)
CO ₂ Capture Auxiliary Power:	(4% of NPO)
Compression Auxiliary Power:	(9% of NPO)
Total NPO:	(26% of NPO)
Cooling Water Needs:	3 gpm/MW
Fixed O&M:	+45% of Total \$ (incl
Variable O&M [.]	+10% of Total \$

Impact to Busbar Costs – 800 MW Case Study

First Year Busbar Cost Comparison

Based on 90% Carbon Capture Compression to fenceline

Capture Economics

- Costs are application dependent, each project should be evaluated on its own merits
 - Plant size (economies of scale)
 - Fuel Cost
 - Cost of Capital
 - Site water availability/cost
 - Labor Costs
 - Integration Capability

Burns & Integration is Key

CCS Determination – Economic Sensitivities

- Carbon Legislation
- EOR potential value and longevity
- Sequestration Costs
- State Renewable Standards
- Permitting schedule

- Nat gas pricing
- Coal/transportation costs
- Load Growth
- Equipment/labor costs market impact
- Financing costs

Significantly Impact the technology selection

Conclusions

- No clear answers for best GHG reduction strategy
- Form of GHG rules still uncertain
- Many solutions are site specific
- CO₂ capture/sequestration not yet "commercial" and may have other impediments
- Need to continually follow R&D

Legislation/Regulation is ahead of implementable technologies. Additional time is needed to fully integrate GHG solutions into the industry.