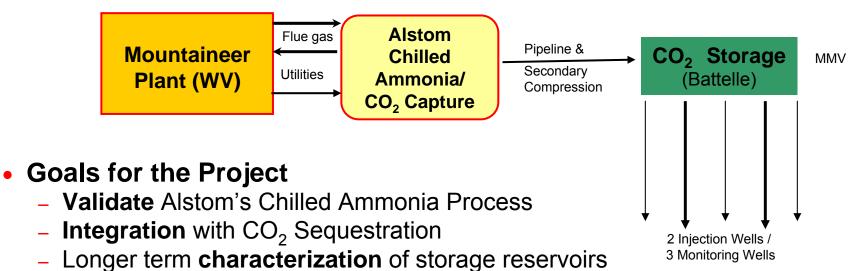
Paper # 72
CCS Project with Alstom's Chilled Ammonia Process
at AEP's Mountaineer Plant

EPRI-EPA-DOE-A&WMA
Power Plant Air Pollutant Control "MEGA" Symposium

R Bollinger D Muraskin

August 31, 2010 Baltimore, MD

Presentation Outline

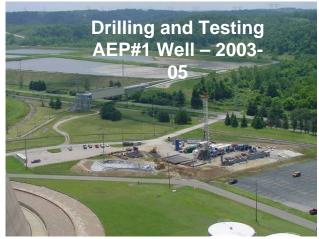


- Project Overview
- CO₂ Storage Characterization & Design
- CO₂ Storage System Operations
- Alstom Chilled Ammonia Process
- Conclusions
- Q&A

Project Overview

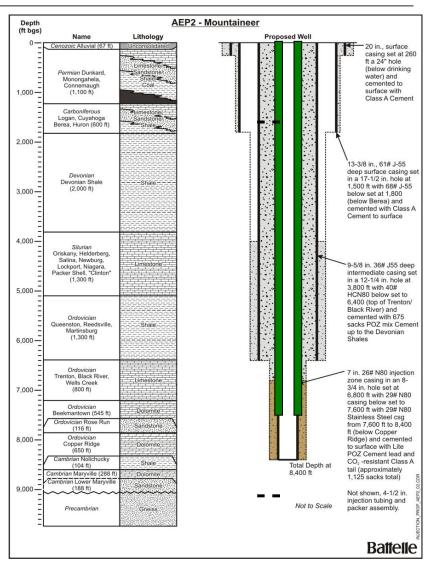
- Flue Gas Slip Stream from Mountaineer Plant
 - Equivalent to 20 MW (electric) from WFGD System
- Capture and Store ~100k metric tons of CO₂ per year
- Project Milestones

 Started engineering, planning, & permitting 	3Q 2007
 Started construction 	2Q 2008
 Captured CO2 for first time 	Sep 1 2009
 Injected CO2 for first time 	Oct 1 2009



Site Characterization Study

- Site characterization and feasibility assessment conducted in 2003 by Battelle
 & Others under DOE funded project
- Foundational work for AEP's CCS program
- Identified Two(2) feasible injection formations for CO₂.
 - > Rose Run Sandstone (AEP-2, 7800 ft)
 - Copper Ridge B Zone (AEP-1, 8200 ft)
- Characterization study found thousands of feet of "Cap Rock" to contain the stored carbon dioxide



Injection Well Design

- Well Design an important means to contain CO₂ in reservoir
 - > Ex. AEP-2 in Rose Run Sandstone
- Similar in design to wastewater injection wells used in oil & gas industry
- Type V Underground Injection Control permit issued by WVa DEP
- Multiple cascading well casings, to provide isolation from:
 - Shallow freshwater
 - Intermediate zones containing coal seams, oil & natural gas
- Stainless steel casing and CO₂ resistant cement deep injection well section



Full Core Samples 2003 Characterization Study

Rose Run Sandstone- 116 ft total thickness, 30 ft porous sandstone

Hydraulic Core Tests 7763.5 ft
Lithology =
Sandstone
Density = 2.68
g/mL
Porosity = 9.1%

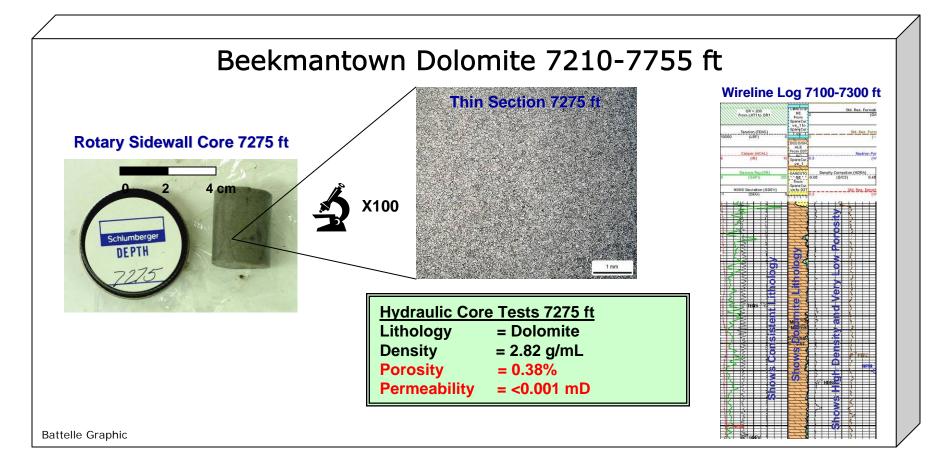
= 36 mD

Data from Battelle

Permeability

Hydraulic Core Tests 7775 ft
Lithology =
Sandstone
Density = 2.64
g/mL
Porosity = 10.4%
Permeability = 49 mD

Lithology =
Sandstone
Density = 2.63
g/mL
Porosity = 11.5%
Permeability = 36 mD


Porosity & Permeability suggested adequate storage reservoirs

Cap Rock Sidewall Cores

2003 Characterization Study

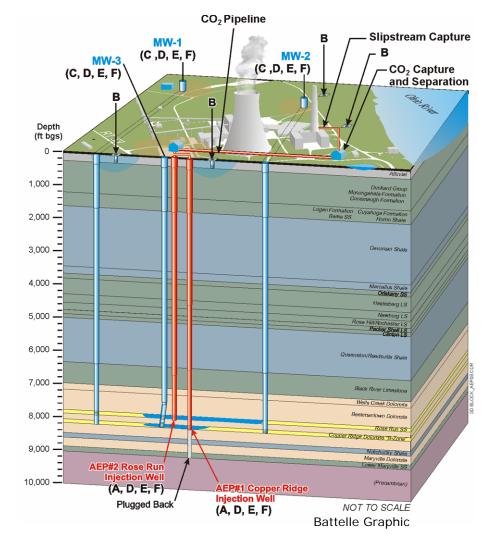
Low Porosity & Permeability indicate excellent cap rock to maintain CO2 storage

MEGA Symposium - CCS Project with Alstom's CAP at AEP's Mountaineer Plant August 31, 2010 - P 7

Well Monitoring System

Injection Well Monitoring

- A Flow rate, pressure, temperature
- Annulus pressure
- Corrosion monitoring
- CO₂ product analysis


Surface Leak Detection Methods

B – Shallow groundwater monitoring

CO2 Tracking and Caprock /

Confining Layer Monitoring Methods

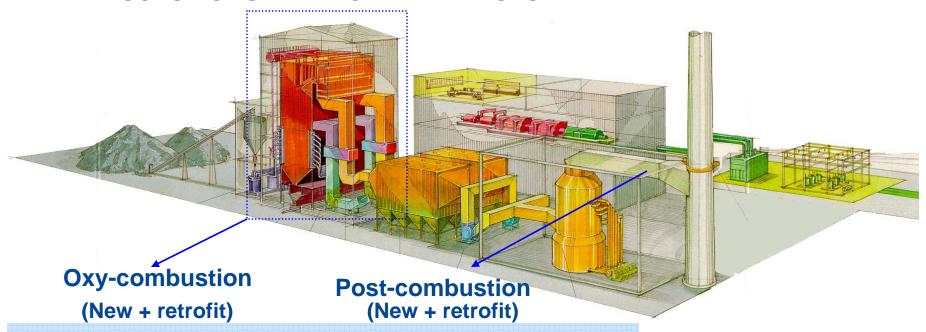
- C Fluid sampling
- **D** Wireline logging
- **E** Pressure monitoring
- **F** Cross-well seismic survey

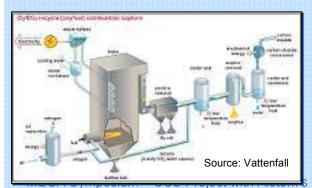
MEGA Symposium – CCS Project with Alstom's CAP at AEP's Mountaineer Plant August 31, 2010 - P 8

Storage System Operations

- Injectivity better than expected into AEP-1 Copper Ridge formation
- AEP-2 Rose Run slow to respond initially; better response recently
- Testing & Monitoring have confirmed CO₂ containment
- Next steps- To evaluate longer term reservoir behavior / storage capacity

Presentation Outline


- Project Overview
- CO₂ Storage Characterization & Design
- CO₂ Storage System Operations
- Alstom Chilled Ammonia Process
- Conclusions
- Q&A



CO₂ Capture Technologies

SOLUTIONS DEVELOPED BY ALSTOM

- -Chilled Ammonia Process
- -Advanced Amines
- -Anti-Sublimation


© ALSTOM 2010. All rights reserved. Information contained in this document is provided without liability for information purposes only and is subject to change without notice. No representation or warranty is given or to be implied as to the completeness of information or fitness for any particular purpose. Reproduction, use or disclosure to third parties, without express written authority, is strictly prohibited.

Chilled Ammonia Process Technology Features

- Energy efficient capture of CO₂
 - Utilizes ambient conditions / natural sources for flue gas cooling
- Can accommodate typical flue gas contaminants (SO_x, HCl, HF, NO_x)
- Flue gas exhaust conditions suitable for release to atmosphere
 - low ammonia slip
 - additional testing forthcoming
- High pressure regeneration
 - High purity CO₂ product, low moisture and ammonia
 - Reduced CO₂ compressor power
 - Lower regeneration energy, low vaporization of water from solvent
- Low cost and market stable reagent with potentially salable byproduct (ammonium sulfate) stream

AEP Mountaineer Product Validation Facility Chilled Ammonia Process New Haven, WV

CAP Development Program Summary Development Plan

2012 2013 2006 2007 2008 2009 2010 2011 2014 2015 **CALENDAR YEARS &** DATES Small-bench First technical hypothesis SRI completed) Large-bench Optimize absorber (SRI completed) design for pilot Field pilots - 15 000 TPY range Validate key performance parameters WE Energies - 5MWth - coal WE test completed E.On Karlshamn - 5 MWth - oil/gas Validation pilot – 100 000 TPY range AEP Mountaineer - 54 MWth - coal System reliability Coal and gas validation Statoil Hydro Mongstad Validation (40 MWth) - gas Large Scale Demonstration - 1 to 1,5 M TPY (400-800 MWth)

Commercial Deployment in 2015

MEGA Symposium – CCS Project with Alstom's CAP at AEP's Mountaineer Plant August 31, 2010 - P 13

CAP Development Program We Energies Field Pilot

Field Pilot Program

- Operational June 2008
- 7700+ hours of operation on flue gas from PRB coal through completion of program in Oct 2009
- Proof of Concept technology validation:
 - 90% CO₂ capture efficiency
 - NH₃ slip from DCC2 (~5 ppm)
 - 99+% CO₂ purity; <10 ppm NH₃;
 2,000 ppm H₂O
 - Functional unit operations
 - Confirmation of process design tools

CO₂ Field Pilot at Pleasant Prairie

CAP Development Program E.ON Karlshamn Field Pilot

Karlshamn Power Plant (Sweden)

CAP Field Pilot

e-on

Field Pilot Program

- Operational Apr 2009
- 1500+ hours of operation on flue gas from sulfur fuel oil ongoing
- Proof of Concept technology validation:
 - 90% CO₂ capture efficiency
 - Flue gas NH₃ slip (~5 ppm)
 - 99+% CO₂ purity; <10 ppm NH₃;
 2,000 ppm H₂O
 - Functional unit operations
 - Confirmation of process design tools

AEP Mountaineer Product Validation Facility

Location New Haven, WV

Capacity 100,000 tonnes CO₂/yr

110,230 tons CO₂/yr

275 tonnes / day

Size ~ 20 MWe

50.584 scfm

CO₂ Capture

75%

Efficiency

CO₂ Storage Deep geological

formations

CO2 Product CO₂: 99.5+%

H₂O: 600 ppmv

Upstream APC ESP, WFGD, SCR,SO₃

Equipment Mitigation

Start-Up September 1, 2009

Fuel Bituminous Coal

Reagent Ammonium bicarbonate

\ carbonate

Absorber Column

Packing

Regeneration Steam – turbine

Energy extraction. Integration of

steam condensate not

included

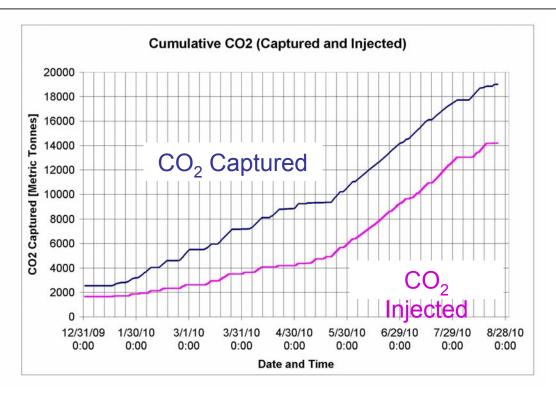
Byproduct Ammonium sulfate

Alstom's Chilled Ammonia Process at AEP's Mountaineer Plant,

All pictures of the Mountaineer CO₂ Capture and Storage Project are the property of Alstom Power and/or AEP

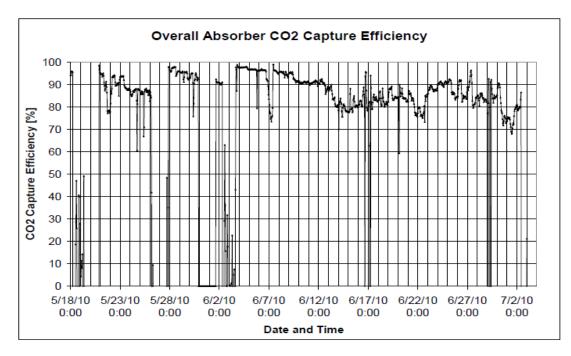
MEGA Symposium – CCS Project with Alstom's CAP at AEP's Mountaineer Plant August 31, 2010 - P 16

AEP Mountaineer PVF Project ALSTOM Commissioning and Start-Up Experience


The following CAP issues were identified during initial operation resulting in modifications to improve operability

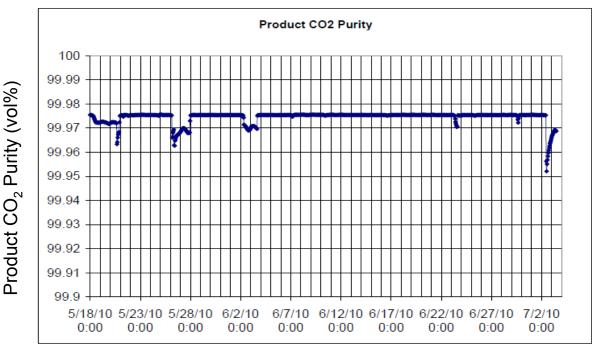
- Utilization \ handling of solid reagent
- Operation of flue gas cooling coils
- Turndown of refrigeration system and CO₂ compressor
- Regenerator feed solution heat exchanger network
- Adjustments to accommodate transient power plant operation

AEP Mountaineer PVF Project Operating Summary


- PVF operating hours: 4400+
- PVF capacity: 40-75%
- CO₂ captured: 19,000+ metric tons
- CO₂ injected: 14,000+ metric tons

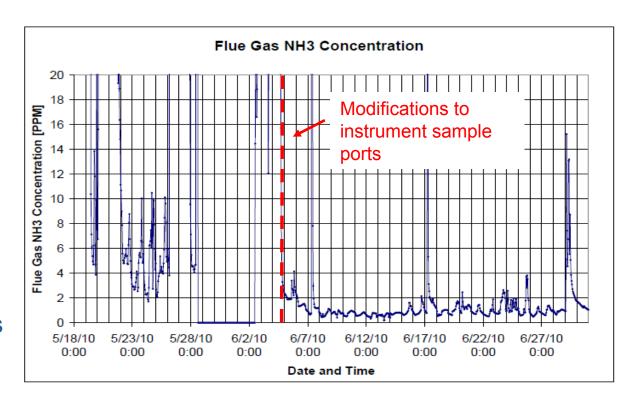
AEP Mountaineer PVF Project Operating Data

- CO₂ removal efficiency above design value of 75%
- Flue gas measurements taken from on-line FTIR instrumentation
- Values verified by mass balance, existing plant CEMS, and field measurements
- Operating data reflects measurements at various conditions, reduced capacity


Conditions shown include variations in scrubbing solution strength and plant capacity

AEP Mountaineer PVF Project Operating Data

- High purity CO₂
 product purity
 achieved on a
 consistent, stable
 basis
- Measurements obtained from on-line FTIR analyzer, consistent with field measurements
- Reported CO₂ purity obtained by difference from H₂O and NH₃ measurements


Date & Time

AEP Mountaineer PVF Project Operating Data

- Flue gas ammonia concentrations leaving the CAP maintained at low levels
- Flue gas ammonia measurements obtained using on-line FTIR
 - Initial on-line instrument inconsistent with field measurements
 - Sample port modifications made to improve on-line accuracy

AEP Mountaineer PVF Project Validation Program

Main objectives to be demonstrated in test campaign and validated with EPRI

- Energy consumption
- CO₂ removal efficiency
- CO₂ product quality
- System reliability

Conclusion

- The Chilled Ammonia Process has been operated at the bench scale, pilot and validation facilities. The plants have demonstrated:
 - CO₂ removal efficiency of 90%+
 - High purity CO₂ product (99.5%+)
 - Storage of CO₂ in geological formations
 - Ammonia emissions in the flue gas at desired levels
- Next steps for the AEP Mountaineer PVF
 - Implementation, tuning of modifications to achieve continuous, full load operation
 - Data collection and evaluation
 - Performance validation with EPRI
- AEP \ Alstom engaged in DOE funded commercial scale plant project

Co-Authors

Mike Hammond

Project Engineer American Electric Power 1 Riverside Plaza Columbus, OH 43215 USA

Brian Sherrick

Project Manager American Electric Power 1 Riverside Plaza Columbus, OH 43215 USA

Gary Spitznogle

Chemical Engineering Manager American Electric Power 1 Riverside Plaza Columbus, OH 43215 USA

Mike Varner

Alstom Power, Inc.
Project Manager
1409 Centerpoint Blvd
Knoxville, TN 37932 USA

Fred Kozak

Alstom Power, Inc.
Business Manager CAP Technology
1409 Centerpoint Blvd
Knoxville, TN 37932 USA

Matt Cage

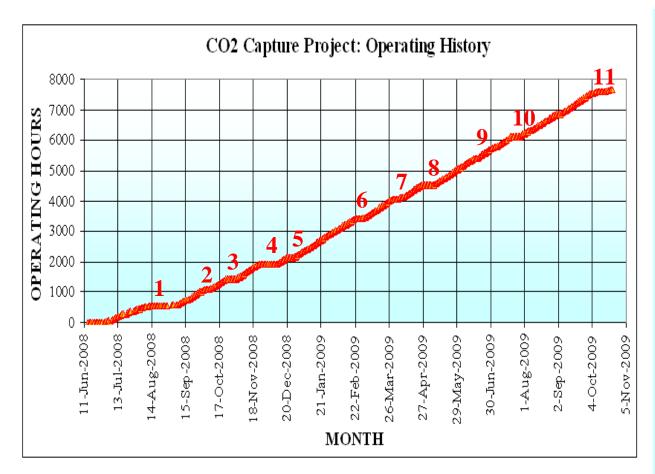
Alstom Power, Inc.
Project Engineer
1409 Centerpoint Blvd
Knoxville, TN 37932 USA

Presentation Outline

- Project Overview
- CO2 Storage Characterization & Design
- CO2 Storage System Operations
- Alstom Chilled Ammonia Process
- Conclusions
- Q&A

CAP Development Program AEP Mountaineer Product Validation

- Designed to capture 100,000 tonnes CO₂/year
- Captured CO₂ is sequestered into two wells on the plant property
- Commenced engineering and permitting in Sep 2007
- Started construction 2Q 2008
- First CO₂ captured
 1st of September, 2009
- Injection started 1st of October, 2009
- Technology Validation Program initiated with EPRI



Alstom's Chilled Ammonia Process at AEP's Mountaineer Plant,

All pictures of the Mountaineer CO₂ Capture and Storage Project are the property of Alstom Power and/or AEP

CAP Development Program CAP Development Progr

Total operating hours - 7,717 Over 65% Availability

- 1. Planned outage to support pilot modifications
- 2. Power Plant Forced Outage
- 3. Planned outage to support pilot modifications
- 4. Thanksgiving + Planned outage to support modification
- 5. Christmas Holidays
- 6. Power Plant Forced Outage
- 7. Planned outage for pilot maintenance
- 8. Unplanned outage for pilot maintenance (chiller)
- 9. Unplanned outage for pilot maintenance (stripper)
- 10. Planned outage to support pilot modifications
- 11. Outage –Regenerator Level Transmitter

MEGA Symposium - CCS Project with Alstom's CAP at AEP's Mountaineer Plant August 31, 2010 - P 28

CAP Development Program Main Partnerships & Projects Portfolio

Chilled Ammonia	Pleasant Prairie, WI (US) - Coal	5 MWt	EPRI WE	ALSTOM	Operational Jun08 to Oct09
	Karlshamm (Sweden) – Oil/Gas	5 MWt	e-on	ALSTOM	Operating since fall 2008
	Mountaineer WV (US) – Coal	54 MWt	AEP®	ALSTOM	Operational since Sept 09
	Mongstad (Norway) – Gas	40 MWt	TCM Catching our Futu	rc ALSTOM	Engineering on going
	Pioneer (Canada) – Coal	>150MWe	Trans ∧ lta_	ALSTOM	Planned start-up 2015
	Commercial scale (US) – Coal	>200MWe	AEP®	ALSTOM	Planned start-up 2015
	Pilots in operation			Tests com	oleted

Projects in different regions with different fuels

MEGA Symposium – CCS Project with Alstom's CAP at AEP's Mountaineer Plant August 31, 2010 - P 29

* Project will include carbon sequestration