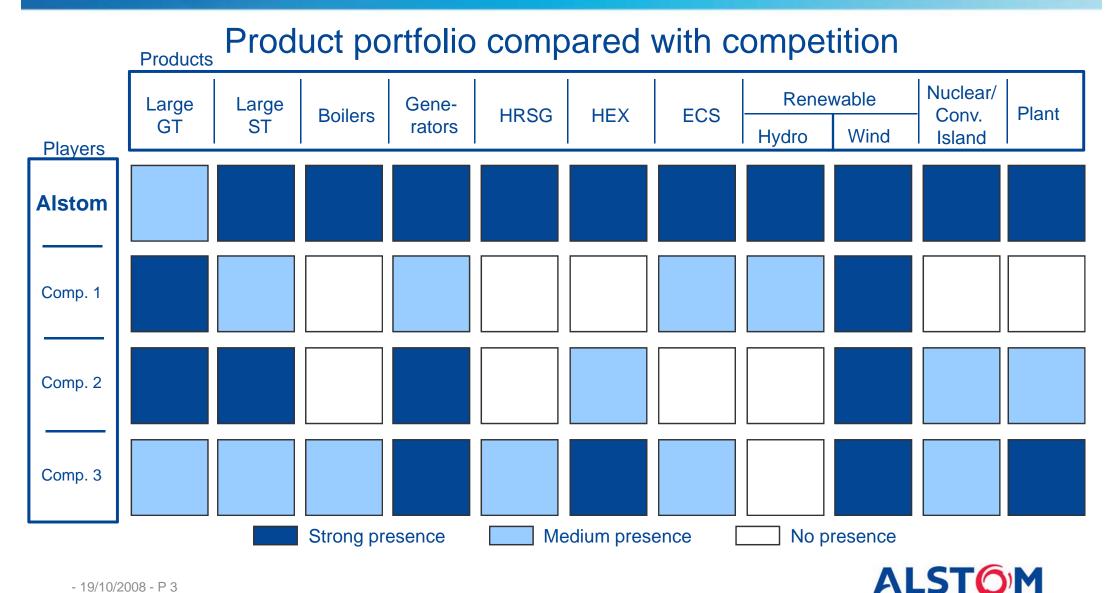
Alstom's CCS Demonstration Projects

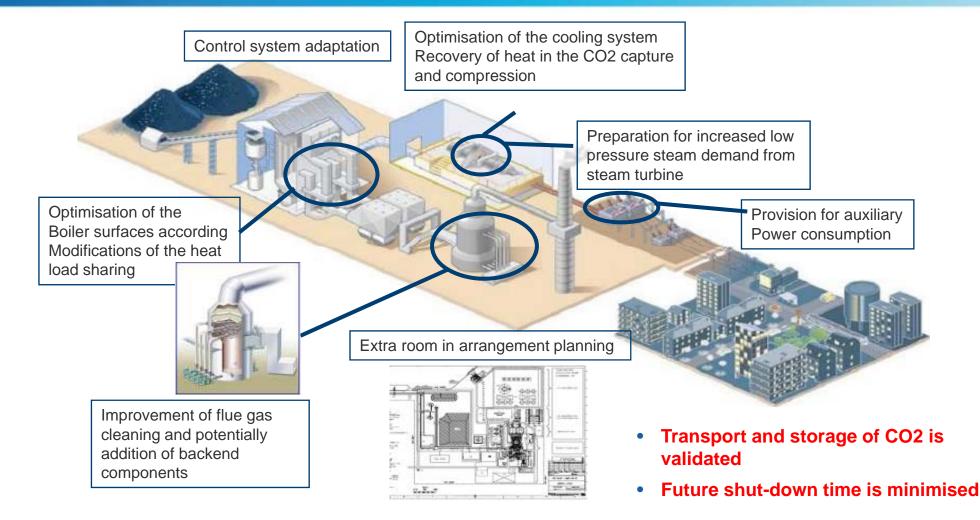
ALSTOM - Core competencies

• Power Systems

•25% of the World's installed capacity

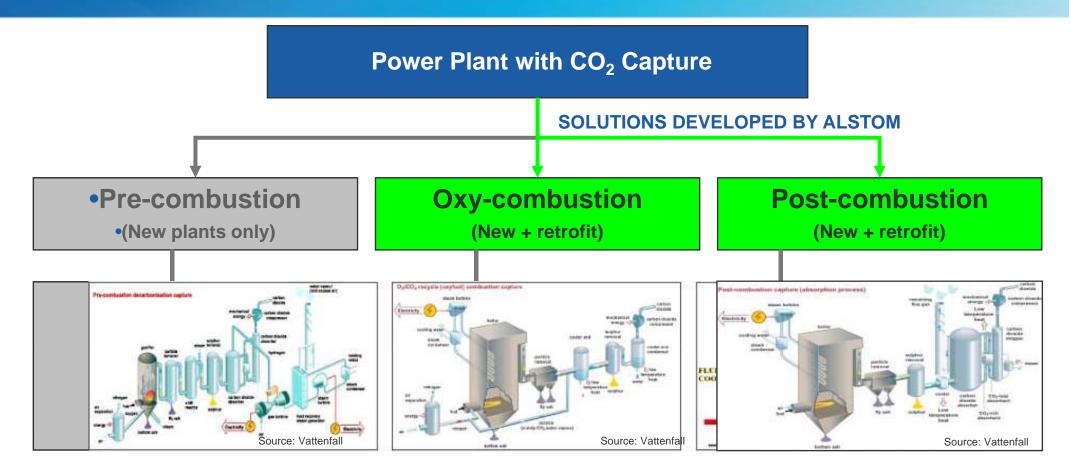
• Power Service


• Rail Transport World Rail Speed Record



Alstom has the most Extensive Product Offering ie Alstom's CO₂ response not technology limited

- 19/10/2008 - P 3


"CAPTURE READY" PLANT CONCEPT CO2 "Capture Ready" concept for a Coal Power Plant

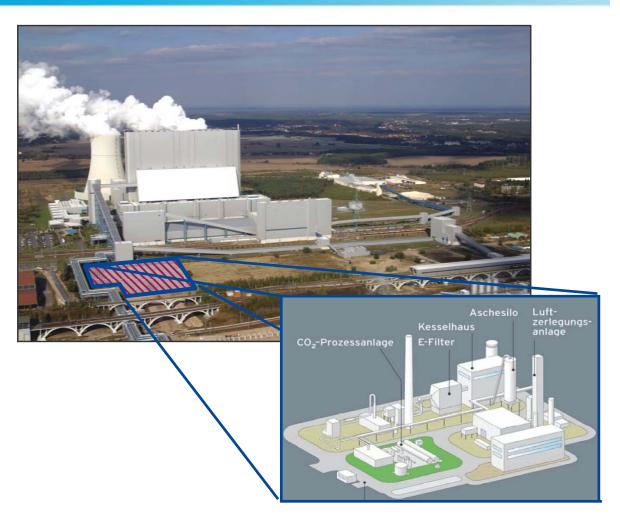
Plant designed for future CO₂ capture addition with minimal plant performance and cost impact

CO2 CAPTURE SOLUTIONS Zero emission technology pathways

All require a form of Gas Separation Technology

Main Alstom PCC Demonstration Partnerships/Projects Announced to Date

CHILLED AMMONIA	Stanford (US) - Gas and Coal	0.25 MWt	EPEI SRI Mernational StatoilHydro ALSTOM
	Pleasant Prairie (US) - Coal	5 MWt	CEPEI we energies, We ALSTOM
	Mountaineer (US) - Coal Northeastern (US) - Coal	30 MWt >200 MWt	
	Karlshamn (Sweden) - Gas	5 MWt	e.on alstom
	Mongstad (Norway) - Gas	40 MWt	StatoilHydro ALSTOM
ADVANCED AMINES	Joint Development Partnershi	DOW ALSTOM	
OXY-COMB	Schwarze Pumpe (Germany) - Coal	30 MWt	
	Lacq (France) - Gas	30 MWt	TOTAL ALSTOM
Lignite Drying	Hazelwood 2030 (Australia)	330 MWt	ALSTO M


Oxy-Combustion Oxy-PC: Demonstration 30 MW_{th:} Vattenfall

 Goal: validation and improvement of oxyfuel process starting summer 2008

Main features

- 5,2 t/h solid fuel 10t/h oxygen
- 40 t/h steam
 9 t/h CO2
- ALSTOM supplies the oxy-boiler and ESP

30 MWt Demonstration – Schwarze Pumpe, Germany

Oxy-Combustion Oxy-PC: Demonstration 30 MW_{th:} TOTAL Lacq

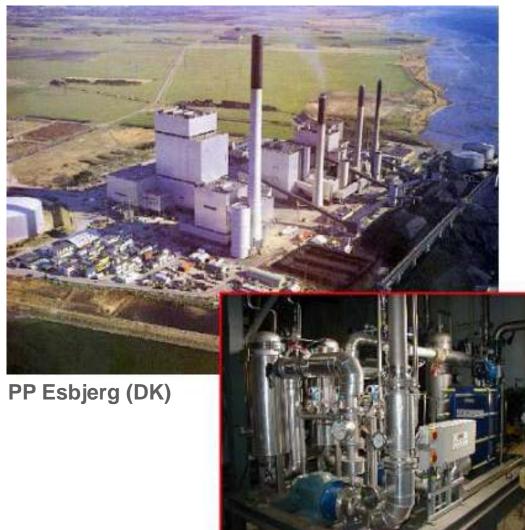
 Goal: validation and improvement of oxyfuel process starting 2008

Main features

- 40 t/h steam, 240 t/day Oxygen
- 150,000 tons CO2 will be stored in a depleted gas field

30 MWt demonstration – Lacq, France

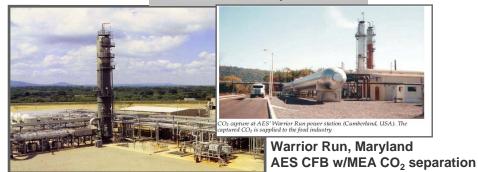
Source: TOTAL


Example of Oxy-fire CO₂ Capture Plant Layout

CO2 CAPTURE SOLUTIONS Post Combustion Solutions for New Plants and Retrofit

CO₂ absorption processes (MEA, MDEA)

- Available in commercial scale
- Retrofitable and flexible
- High energy demand for regeneration of solvents


1 t CO₂/h pilot plant (CASTOR EU-FP6)

Post Combustion Capture Partnership with DOW

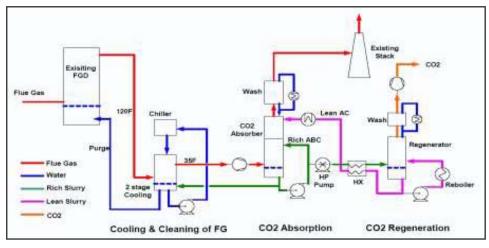
1 t CO₂/h pilot plant (CASTOR EU-FP6)

SHADY POINT, OKLAHOMA, USA AES CFB w/ MEA CO2 separation

Amine CO2 capture is proven

- Retrofitable
- Installed on a few plants burning coal
- High energy demand for regeneration

Exclusive partnership with DOW


- Advanced Amines
- Improved Process
- Plant Integration

- 19/10/2008 - P 11

CO2 CAPTURE SOLUTIONS Chilled Ammonia Process

A promising technology for post combustion carbon capture

Advantages

- High efficiency capture of CO₂ and low heat of reaction
- Low cost reagent
- No degradation during absorptionregeneration
- Tolerance to oxygen and contaminations in flue gas

Principle

- Ammonia (NH₃) reacts with CO₂ and water. It forms ammonia carbonate or bicarbonate
- Moderately raising the temperatures reverses the above reactions – releasing CO₂

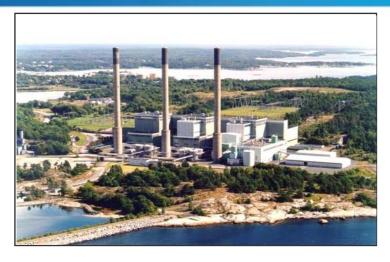
5 MW Pilot Plant (USA)

Start-up anticipated for 2007

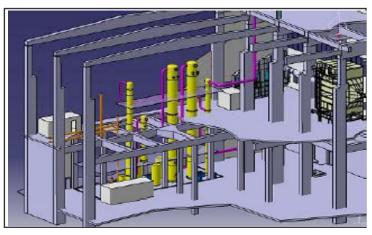
Post-Combustion Chilled Ammonia - Field Pilot at WE Energies

Pleasant Prairie Power Plant (US)

Test Bench 5 MW, start up in February 2008 - 19/10/2008 - P 13



Industrial pilot program


- Project participation through EPRI by over 30 US and international utilities
- Designed to capture up around 15,000 tons/year of CO2 at full capacity
- Absorber and cooling systems commissioned
- Erection of regenerator system in completion
- Parametric testing to commence March 2008
- Will provide data necessary to establish "proof of concept"

Post-Combustion Chilled Ammonia - Field Pilot at E.ON Karlshamn

Karlshamn Power Plant (Sweden)

Test bench 3D schematic


eon

Industrial pilot program

- Designed to capture up around 15,000 tons/year of CO2 at full capacity
- Project schedule:
 - -Commissionning July 08
 - -Testing Fall 2008
- Testing to continue into late 2009

Post-Combustion Chilled Ammonia - Demonstrations: AEP & STATOIL

Industrial demonstrator 30 MWt, Mountaineer (US)

Industrial demonstrator 40 MWt, Mongstad (Norway)

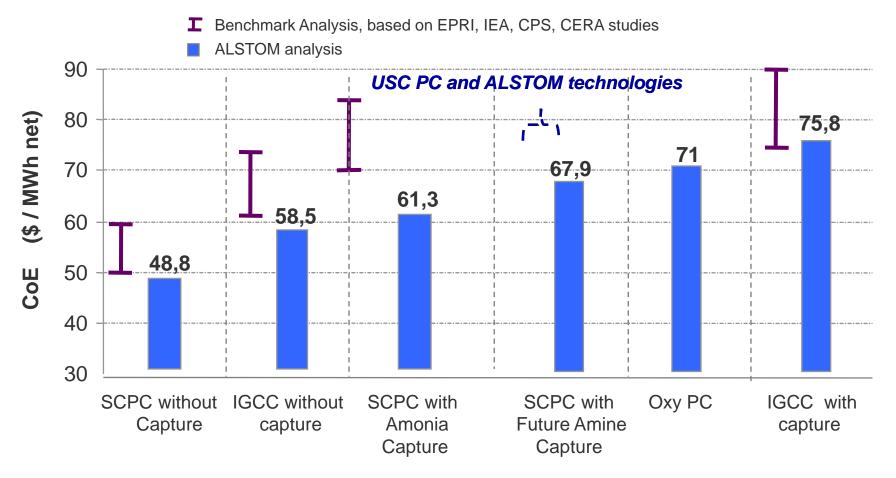
- Designed to capture up around 100,000 tons/year of CO2 at full capacity
- Saline aquifers storage
- Commenced engineering Oct 07
- Project commissioning 09

StatoilHydro

- European Test Centre Mongstad for flue gases from natural gas CHP plant and a refinery
- Designed to capture 100,000 tons/year

Capture and Storage Deployment time-line

Roadmap											
Capture	2007	2010		2015	20	20	2025	2030			
Post- comb.	Pilot	/ Demo	Pre- commercial		Commercialization						
Oxy- comb.	Pilo	ot / Demo	Pre-comm	nercial		Com	mercialization				
Pre- comb.		Pilot / De	emo	Pre-c	commercial		Commercialization				
Transport											
EU,US Australia	Local,	Local, limited EOR projects + Demo			Progressive pipeline deployment, depending on validated storage sites						
Storage											
EU,US Australia	EOR ·	+ validatio sites	n of storage		Ramp-	up to full	scale saline aquifer st	orage			
Source : Alstom Anal	lysis							_			
	Ample storage available but its timely deployment is										


the likely bottleneck

ALSTOM

- 19/10/2008 - P 16

4. CO2 CAPTURE SOLUTIONS Technology comparison –2015 Design – 650 Mwe (net)

Cost of electricity comparison

