

Which FGD Process to Choose?

ADVATECH[™]

A URS and MHPSA Company

Wet Calcium FGD Hot Topic Hour

July 24, 2014

Which FGD Process to Choose?

Attribute	Wet FGD	Dry FGD	DSI	Notes
SO ₂ & HCl Removal	***	**	*	WFGD: >99% removal over wide range of conditions
Fuel Flexibility	***	**	*	WFGD: better equipped to handle a wide range of fuels
Reliability	***	**	*	WFGD: reliably operates 2-4 years between outages
Ease of Retrofit	**	*	***	WFGD: installed where space usually available
Scalability (Sizing)	***	**	*	WFGD: single module can scrub up to 1300 MW from multiple units
Minimize Solid Waste Disposal Cost	***	**	*	WFGD: gypsum production can offset landfill requirements/disposal costs; no impact to ash sales
Lowest Installed Cost	*	*	***	WFGD: can be designed for pre-ground limestone; with additional 50-75% removal, avoids FF
Lowest Operating Cost	***	**	*	WFGD: lowest reagent cost but highest overall power requirement
Plume Aesthetics	*	***	**	WFGD: less buoyant moisture plume
Wastewater Discharge	*	***	***	WFGD: may generate liquid waste stream requiring treatment
Water Consumption Minimization	*	**	***	WFGD: can use portions of existing plant wastewater that otherwise have to be treated
Mercury Removal	***	***	*	WFGD: capture high levels of oxidized Hg
Sulfur Trioxide Removal	*	***	***	WFGD: typically removes 10-50% of SO ₃

MYTHS About Wet FGD

- WFGD Costs More Than DFGD
 - Wet FGD has been installed on an EPC basis for < \$280/kW (excluding Owner's costs)
- WFGD Requires a Costly and Difficult-to-maintain WWT Process
 - At times, enough chlorides can be purged with non-wallboard-grade gypsum to avoid a wastewater stream
 - When required, low-capital / low operating cost options exist to control chlorides to a reasonable range
- You're Going to Need a Fabric Filter (FF), So Better Go Dry
 - With MATS limited to filterable PM, compliance is achievable with an ESP followed by WFGD (additional 50 to 75% PM removal by WFGD)
- It's More Challenging to Achieve MATS Hg Limits with WFGD
 - Numerous test programs show that >90% Hg removal (coal to stack) can be achieved on systems with wet FGD for all fuel types and AQCS configurations, even in the absence of an SCR and FF
- WFGD is Susceptible to Significant Corrosion
 - Countless examples of how proper design/operation and material selection provide for a highly robust and long-lasting system
 - Many economical materials have proven highly reliable, including FRP and corrosion resistant linings
- You're Going to Need a New Stack with WFGD
 - The option exists to reline your existing stack flue if the outage can be tolerated
 - For smaller units, an integrated-stack is a viable and cost-effective option
- You Don't Have the Space for WFGD
 - A single WFGD module can handle upwards of 1300 MW of capacity
 - Through use of pre-ground limestone, reagent preparation equipment can be greatly minimized
 - Since WFGD downstream of the particulate control device, usually more space exists for installation

Steps to Reduce Wet FGD Cost

- Procure on an EPC basis
- Minimize overdesign
 - Design for fuel most likely to use
- ✓ Use pre-ground limestone
- Treat multiple units with a single module
- ✓ Employ close-coupled arrangement
- Control chlorides to levels that permit use of less expensive materials
- ✓ Minimize/eliminate extraneous scope
- ✓ Optimize balance-of-plant scope of supply

Example Selection Matrix

		SO ₂ Removal	Existing ESP Adequate	Existing ESP Marginal	Existing Fabric Filter	New Fabric Filter
y <400 M ²	Low- to Med-S Fuel	<94%	WFGD or DSI*	WFGD or SDA/FF	SDA, DSI* or WFGD	SDA or DSI*
		>94%	WFGD	WFGD	WFGD	CDS
		>98%	WFGD	WFGD	WFGD	WFGD or CDS
	Med- to High-S Fuel	<94%	WFGD or DSI*	WFGD	SDA, DSI* or WFGD	CDS or SDA
		>94%	WFGD	WFGD	WFGD	CDS
	Me Hig	>98%	WFGD	WFGD	WFGD	WFGD
y >400 M Low- tc Med-S	Low- to Med-S Fuel	<94%	WFGD or DSI*	WFGD	WFGD	SDA or DSI*
		>94%	WFGD	WFGD	WFGD	CDS
		>98%	WFGD	WFGD	WFGD	WFGD or CDS
	d- to th-S Fuel	<94%	WFGD	WFGD	WFGD or DSI*	CDS, SDA or DSI*
		>94%	WFGD	WFGD	WFGD	CDS or WFGD
	Me Hig	>98%	WFGD	WFGD	WFGD	WFGD

^{*} DSI limited to a maximum of 70-80% sustained removal with a fabric filter and less with an ESP.

When WFGD Makes Sense

- ✓ Significant SO₂ to scrub
 - Large capacity and/or high-S fuel
 - Very high % removal
- ✓ Installing a new FF or significantly modifying an existing can be avoided
- ✓ Lifecycle cost is important
- ✓ Higher water usage is tolerable
- ✓ A chloride purge isn't required or can be minimized

