

Converting to Natural Gas for MATs Compliance August 7, 2014

Presented by R. Gifford Broderick

CCA Combustion Systems a Division of Peerless Mig. 884 Main Street, Monroe, Connecticut 06468 Tel: (203) 268-3139 Fax: (203) 261-7697 www.cca-inc.net

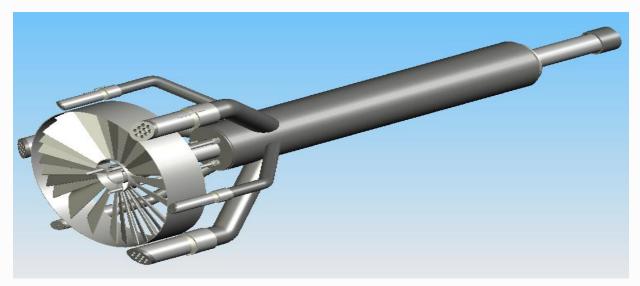
Background

- Many Power and Industrial Companies are Considering or in the Process of Converting from Coal or Oil to Natural Gas Firing
- Objectives Include Compliance with MATS Regulations, Simpler Operations, and Reduced O&M Costs
- Gas Conversions Require Evaluation of a Number of Issues that are Reviewed in this Webinar

Basic Requirements

- Long Lead Items
 - Gas Supply
 - Boiler Study (Metal Temperatures & Circulation)
 - Outage Schedule
 - Air Permit
- Considerations for Gas Burners or Burner Modifications
 - Retain or Remove Oil/Coal
 - Added Emissions Controls
- Gas Valves
- Revised Burner Management System (BMS) and Approvals
- Revised Combustion Control (DCS)
- Boiler Changes if Required
- Will Higher Moisture Affect the Stack?
- Bypass or Remove Existing Particulate or Sulfur controls
- Review Fans and Auxiliaries

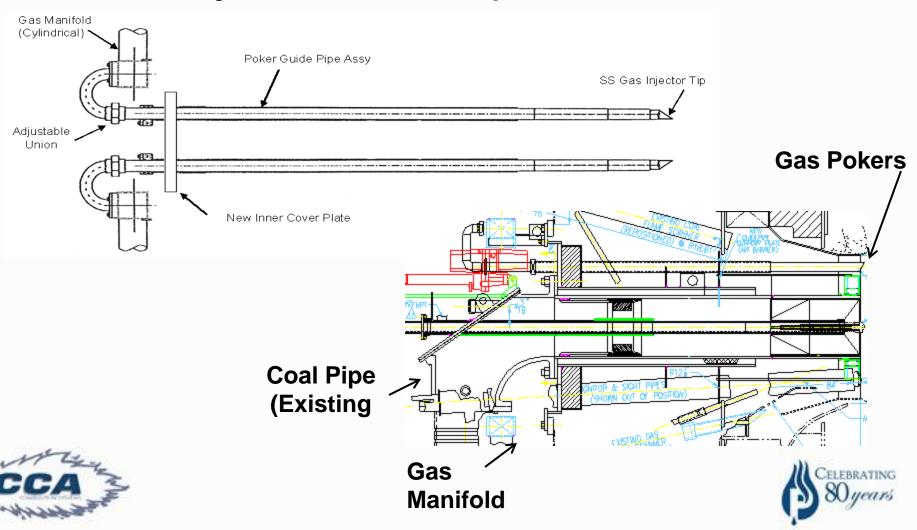
Basic Principles of Burning Natural Gas Low-NOx Burners or Modification


- 1. Safe & Stable flame
- 2. CFD can help Design for Unusual Cases
- 3. Good turndown 10:1 is typical
- 4. Fit the Furnace Cavity
- 5. Low NOx
- 6. Balanced Air and Fuel Flow to each Burner
- 7. Good Flame Detection
- 8. Reasonable Pressure Drop

Basic Principles of Burning Natural Gas Low-NOx Burner Modifications

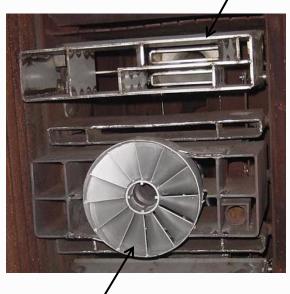
- Are the Air Registers in Good Condition?
- For Circular Burners, Remove the Center Fuel Assembly and Replace with the "Slide-In" Assembly shown below
- Balance Air Flow (CFD, Physical Model, Sleeve Damper)
- Add a Fuel Balancing Valve at each Burner

New Low-NOx Burners



Gas Retrofit to Coal Circular Burners

Retain Coal Pipe - Retrofit Gas Manifold and Poker Assembly "Around" Coal Pipe


Gas Retrofit to Coal T-Fired Burners

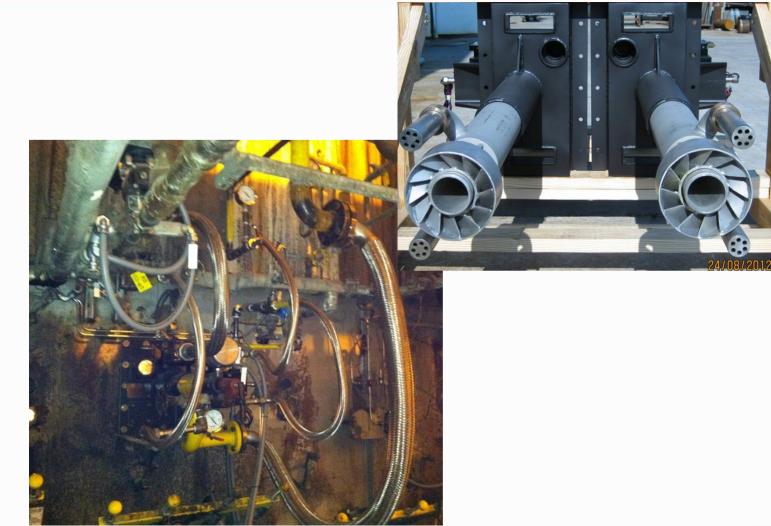
Tilting Retrofit Low-NOx Gas Injectors Above & Below Coal

Retrofit Gas Injectors Behind Bucket

Flame **Stabilizer**

Low-NOx

Gas Injectors


Tangent Firing Without Tilts

Recovery Boilers & Stokers

Valve Trains

Impacts on the Current Equipment

- Boiler Superheater, Reheater, Sprays and Headers
- FD and ID Fans
 - Gas requires more air then oil but less then coal, gas also needs about 4% more heat input then oil
- Stack and Flues
 - Gas has more moisture in the flue gas so the stack liner must be evaluated
 - Gas will have a visible water vapor plume on cold days
- Soot blowers won't be needed
- Clean your furnace
 - A good wash down will help
- Consider keeping a backup fuel coal, #6 oil, or #2 oil
- · Consider the recent price of gas this past winter
- DCS and BMS
- Sources of ignition near your gas path
- Windbox air flow correction
- Minimum boiler turndown can be lower

Standards for Safety and Controls

- The primary safety standards and codes are as follows:
 - NFPA 85
 - NFPA 54, ANSI B31.1 B31.3 or
 - NFPA 56
 - Factory Mutual (FM)
 - BLRBCK
- Not a comprehensive list!

Comparison of NOx Technologies

Reduction Method	NOx, % Reduction	Annualized Cost Factor NOx Removal	Boiler Impact
Low NOx Burner	25+%	Low	Low
OFA/BOOS	25+%	Low	Low
Water Injection	25-35%	Low	Moderate
FGR	25-75%	Moderate	Moderate to High
SOFA & FGR	50-80%	Moderate	Moderate to High
Ultra Low NOx Burners & FGR	90%	High	Package Boilers Only
SNCR*	10-30%	Moderate	Low
SCR	90+%	High	Low

Often not appropriate for Gas unless other fuels are used

Permitting

- Start Early
- Engage a consultant to speak to the regulators
- Often the permit will allow gas to be added as long as the emissions are lower than other fuels

Comparison Of Natural Gas Combustion Properties

Fuel Type	HHV BTU/LBm	*Mass Air to Mass Fuel	% Excess Air	Total Air	Typical Boiler Efficiency
Natural Gas	≈ 21,000	17.23	7-12	117	82-84%
#6 Oil	≈ 18,100	13.63	10-15	116	85-88%
Coal	11,000- 13,000	10.7	25-30	126	84-86%
Biomass	7,300- 9,000	4.8	25-32	126	75-78%

* Stoichiometric

Gas Conversions at Utility Field-Erected Wall, Cyclone and T-Fire Units

- Utility Boilers require precise regulation of superheat and reheat temperatures
- Coal to gas
 - Usually plenty of furnace size and fan capacity
 - Minor (if any) changes to steam or metal temperatures
- Oil to gas may require major changes to superheat and reheat surface or sprays (small furnace)
- BMS/DCS may be old and difficult to modify
- Cyclones boilers have very high NOx
- What to do with sulfur and particulate controls

Industrial Field-Erected Wall, Cyclone and T-fired Units

- Coal or Hog to gas there is usually plenty of furnace size, fans may need to be upgraded
- BMS/DCS may be old and difficult to modify
- Space around the boiler may be limited for gas valves
- What to do with sulfur and particulate controls

Stokers, Recovery Boilers, Package Boilers

• Stokers

- Can be up fired, wall fired, tangent fired or other
- Grate may or may not need to be covered or removed
- Fans need to be evaluated

Recovery Boilers

- Require very special burner
- Flame detection requires a flame rod
- Load burners and startup burners are different

Package Boilers

- Very narrow furnace width
- Volumetric heat release is high
- Combustion air is ambient in most cases
- FGR or SCR are often easy to implement for larger NOx reductions

Single burners are easy to modify

Options & Limitations Related to Keeping Your Current Fuel for use During Emergencies or During Fuel Price Volatility

- 1. You are subject to greater price volatility
- 2. Interruptible gas is lower cost
- 3. Many are converting to #2 oil as a back-up fuel
- 4. Once you remove coal it is difficult to go back
- 5. Gas can usually be added to an existing burner

CCA Combustion Systems Issues to Consider when Converting from No. 6 to No. 2 Oil Firing

August 7, 2014

No. 2 Oil Firing Applications

- No. 6 Oil-to-Natural Gas Conversion Projects
 No. 2 Oil Preferred Over No. 6 Oil as Backup Fuel
 - for MATs Compliance
- No. 2 Oil Added as Backup Fuel for Coal-to-Natural Gas Conversion Projects
 - Less Infrastructure Required than Adding No. 6
 Oil as Backup Fuel
 - MATs Compliance
- Misconception: No. 2 Oil Easier to Burn than No. 6 Oil Because it is a "Cleaner" Fuel

Issues with No. 2 Oil Firing

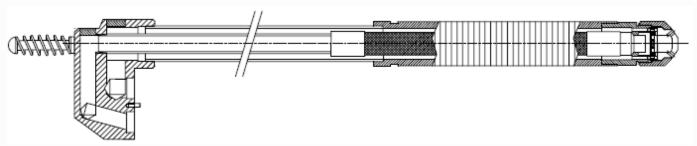
- Differences in Properties of No. 2 & No. 6 Oils that Can Affect Burner Operation
 - No. 2 Oil Viscosity Much Lower Affects Performance of No. 6 Oil Pumps
 - ULSD has Low Lubricity May Affect Pump Life
 - No. 2 Oil Not Heated Temperature Typically Ranges from 30-70°F
 - No. 2 Oil HHV (Btu/gal) ~7% Less than No. 6 Oil Higher Flow Capacity Atomizers Required
- Simply Replacing No. 6 Oil Atomizer with Higher Capacity Atomizer Not Only Consideration

No. 2 Oil Atomization

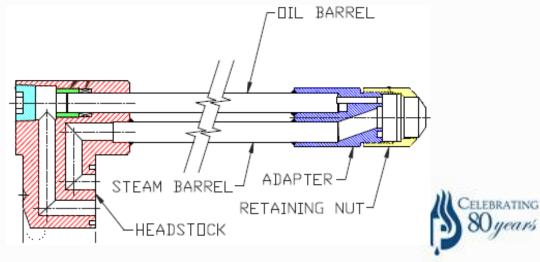
- Air Atomization Preferred for No. 2 Oil
 - High Compressed Air Requirement Generally Limits
 Air Atomization to Igniters & Single Burner Applications
- Steam Atomization of No. 2 Oil Required for Large Burners and Multiple-Burner Boilers
 - Must Limit Contact of Steam with Relatively "Cold" No. 2 Oil to Prevent Steam Condensation
 - Condensed Steam Can Adversely Affect Atomizer
 Capacity and Atomization Quality, Causing High
 Opacity (Visible Smoke) and High CO/UBC

Steam Atomization of No. 2 Oil

- Steps to Minimize Condensation of Atomizing Steam by Cold No. 2 Oil
 - Selection of Oil Gun and Atomizer Design to Minimize Contact of Atomizing Steam and No. 2 Oil
 - High Atomizing Steam-to-Oil Mass Ratio
 - High Atomizing Steam Temperature
 - Increase No. 2 Oil Temperature

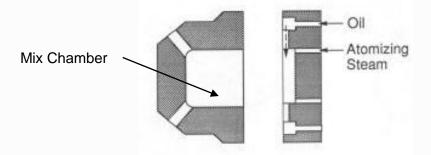


Steam Atomization of No. 2 Oil (cont)

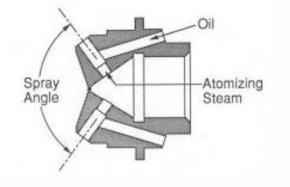

OIL GUNS

 Avoid Coaxial Oil Guns which Maximize Contact of Atomizing Steam and Oil:

 Use Parallel Barrel Oil Guns to Minimize Oil-Steam Contact:



Steam Atomization of No. 2 Oil (cont)


ATOMIZERS

 Avoid Internal-Mix Atomizers that Maximize Oil-Atomizing Steam Contact:

 Use Y-Jet Atomizers that Minimize Oil-Steam Contact (No Mix Chamber):

Steam Atomization of No. 2 Oil (cont)

ATOMIZING STEAM & No. 2 OIL CONDITIONS

- Atomizing Steam-to-Oil Mass Ratio ≥15% (10% Typical for No. 6 Oil)
- Superheated Atomizing Steam
- Increase Temperature of No. 2 Oil to ~ 100°F (but Below Flash Point of ~ 125 °F)
- Atomizer Design Should be Confirmed by Laboratory Spray Tests Before Installation

Conclusions

Questions

R. Gifford Broderick 203-268-3139 ext 122 gbroderick@peerlessmfg.com www.cca-inc.net

