O&M Issues DSI Systems
Startup, Shutdown & Cycling Loads

Tony Licata — Licata Energy

McIlvaine Hot Topic July 10.2014
EPA Requested Comments on Proposed New Rules Startup-Shutdown-Maintenance (SSM)

• Request published on 6/25/13 based on rules proposed 12/30/12
• Reopened comment period limited to 3 questions
• Institute of Clean Air Companies (ICAC) submitted comments on 8/26/13 addressing
 • SCRs & SNCR
 • ESPs
 • Baghouses
 • Wet and Dry FGD
 • DSI & carbon injection

July 2014
O&M Issues Coal Fired Plants

• Startup – Shutdown Rules
• Start averaging time using a default electrical production
 • 25% of nameplate capacity plus 3 hrs. or
 • the start of electricity generation plus 6 hrs., whichever comes first;
• Other Industry Challenges Cycling Loads
• “Green” Energy and gas price: coal plant cycling
 • Shutdowns: hours to a few days
• Low load operations
• Improved heat rate for CO₂ Rule
DSI Challenges

- How soon can we turn or turn off on DSI & carbon systems.
- Prevent deposits forming in ductwork.
- Sorbent contact with acid gases/Hg at low flow conditions - mass transfer
- Does the chemistry work at lower temperatures seen during startup/shutdown?
- Contact time
- Impacts on balance of plant
What Can We Do?

• Modeling - most modeling for flow distribution and deposition done at full load conditions.
• Need to model at low flow conditions
• Inspections of ductwork after cycling operations
• Use CEMS when possible to optimize sorbent injection.
• Other
 • Better distribution
 • More frequent tuning
 • Frequent cleaning of catalyst & airheater
 • DSI injection ahead of airheater
Benefits of DSI Injection During Start/Shutdown and Cycling Operations

- With increased cycling operations we expect to see increased corrosion along the flue gas path. Lime injection could mitigate corrosion that will develop with these operating conditions.
- Allow SCRs to startup earlier (lower operating temp.)
 - Startup - Shutdown Conditions
 - Turn on ammonia \(\approx 600 \, ^\circ F \)
 - Actual depends on fuel primarily sulfur
 - SCRs are temperature driven – no relationship to MW generation

July 2014
Typical SCR Startup & Shutdown

- **Startup - Shutdown Conditions**
 - Temperature limited by ABS formation that fouls airheater
 - ABS needs SO_3 and NH_3
 - Take SO_3 out and you can start injecting NH_3 sooner which will result in reducing NOx and being in compliance sooner limit to less than 5 ppm
 - Inject before catalyst or airheater
 - May be able to lower startup temperature from 600 °F to 540 °F
Benefits of Pre-APH Removal of SO$_3$

Improve Heat Rate/Reduce CO$_2$ Emissions

- Reduce SO$_3$ Dew Point prior to APH
- Reduce operating temperature of APH

40°F reduction \rightarrow 1% heat rate improvement \rightarrow 1% savings on fuel budget

- Reduction in CO$_2$ emissions
 - 1 lb coal \rightarrow 2.5 lb CO$_2$
DSI Challenges

- Emissions Control
- Operate over wide range of load conditions
- Can it play a role in heat rate improvement
- “Net” low cost sorbents that do not impact other APC equipment performance and ash management
DSI Design

• Periods of operation, especially for boiler startup, characterized by rapid transient changes in flue gas composition, quantity, temperature, and moisture conditions.

• The problems are aggravated with installation of multiple APC equipment and processes, especially those required to achieve MATs compliance.

• Minimize Sorbent usage
 • Cost
 • Ash
 • Other APC equipment
Key To DSI Design

• Distribution of sorbent
• Get the sorbent to the pollutant in the flue gas
• Adjustable feed rate – don’t overfeed or underfeed
• Modeling
• Mixing
• Maintain Ca/air ratio in transport pipe and injectors
 • Plugging at low flow
 • Mat need to overfeed
DSI System – for SO₃ Control

• Target feed rates established during stack test period
 • Complete load profile, not all at full load
 • Coal sulfur content ranges

• In line monitoring of emissions
 • SO₃ : Breen, SICK, Stack visual
 • SO₂ : CEMS
 • Hg : CEMS (indirect method)
Injection Pre-SCR

Benefits
- Earlier control of SO_3
- Longer contact time
- Enhanced mixing

Concerns
- Fouling of catalyst
- No signs of deactivation on test conducted to date
Questions & Answers

Tony Licata
Licata Energy & Environmental Consultants, Inc.
345 Concord Road
Yonkers, NY 10710
Phone 914-779-3451
Email TonyLicataLEEC@aol.com