

URS Methodology for Assessing FGD Corrosion Risk for Bromine-based Mercury Control Technologies

Gary Blythe and Ben Bayer, URS Corporation John Grocki, Advantage Resources Consulting, LLC Casey Smith, Lower Colorado River Authority

Background

- LCRA was considering technologies for MATS Hg control compliance at the Fayette Power Project station
 - -Three PRB-fired units, 450-610 gross MW, C-ESP, wet FGD

-Native Hg oxidation ~50%

- Candidate technologies were tested at full scale in 2011:
 - Br addition with coal

- -Injection of brominated powdered activated carbon (PAC)
- –Br addition with coal plus injection of non-Br PAC

Balance-of-Plant Impact Concerns for Bromine-based Technologies

- Potential corrosion in bunkers, coal feeders
- Air heater basket corrosion
- Increased pitting and/or crevice corrosion of wet FGD alloys of construction
 - -Station operates with zero liquid discharge
 - Units 1 and 2 FGD use mostly Stebbins Tile and C-276; some lesser alloys in wetted areas

Closed-loop water balance

-Unit 3 FGD uses 316L with Potential Adjustment Protection, 317 LM, Alloy 2205

Relatively open-loop water balance

-Large reclaim water system ties the FGD systems together

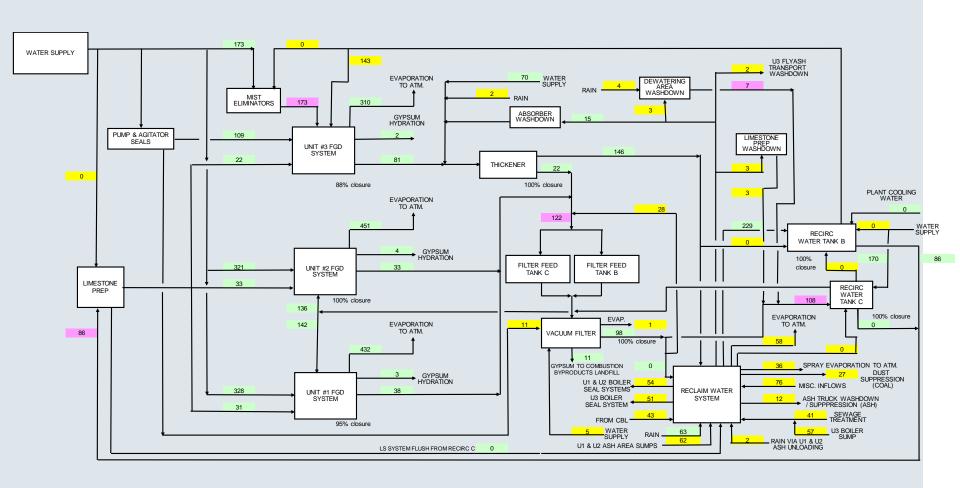
• Cl⁻ purge water from Unit 3 used as makeup for Units 1 and 2

Technical Issue – How to Assess Increased Risk to FGD Alloys from Br-based Hg Controls

- Inventory of water at station and closed water loop on Units 1 and 2 FGD make testing for steadystate Br concentrations impractical
 - -Months of testing would be required
- Substantial industry experience with Cl⁻ and FGD alloys, but little experience with Cl⁻/Br⁻ mixtures to determine safe limits

Technical Approach – FGD Water/Halide Mass Balance + Metallurgical Evaluation

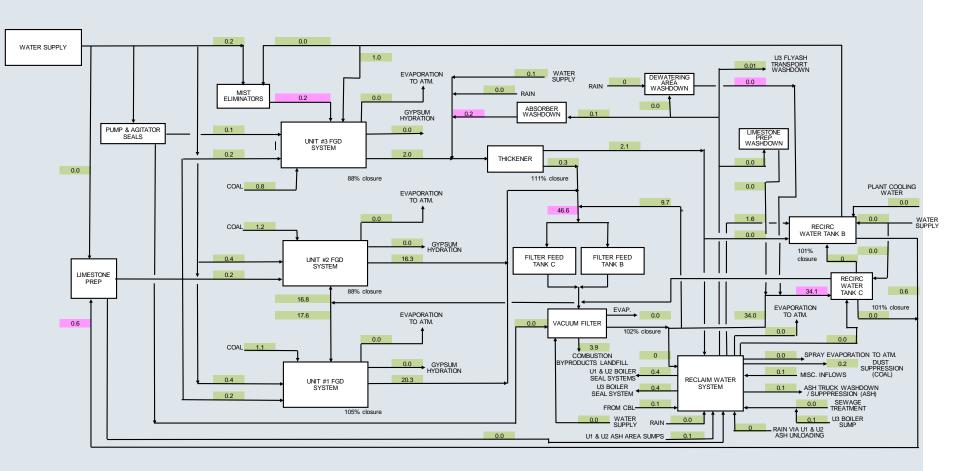
- Developed spreadsheet-based mass balance tool
 Process flow diagrams, water balance, CI and Br balances
- LCRA data available to develop tool:
 - -Multiple years of coal data
 - -Existing station-wide water balance
 - But represented annual averages; not tied to specific coal, or unit operating conditions
 - -Measurements of Br in FGD inlet flue gas during 2011 Hg control option testing
 - -Process water Cl⁻ and Br⁻ concentration data collected over several months (summertime drought conditions)
 - -However, did not have Br in coal or makeup water



Part 1: Developing Balance Cases

- Established baseline:
 - -Adapted station water balance to spreadsheet
 - -Converted average flows to process-based rates where possible (based on unit load, coal S, etc.)
 - -Used plant process water halide data to develop Cl⁻, Brbalances (educated guess on coal, makeup water Br⁻)
 - Adjusted process flow diagram, flow rates to achieve good closures
- Developed predictive balances for Hg control conditions
 - -Used 2011 Hg control test data for future Br- input to FGD
 - Let mass balance spreadsheets predict steady-state Cl⁻, Br⁻ in FGD systems

Example Water Balance Process Flow Diagram



 URS
 Methodology for Assessing FGD Corrosion Risk for Bromine-based Mercury Control Technologies

 POWER
 INFRASTRUCTURE
 FEDERAL
 INDUSTRIAL & COMMERCIAL
 7

Example Br Balance Process Flow Diagram

 URS
 Methodology for Assessing FGD Corrosion Risk for Bromine-based Mercury Control Technologies

 POWER
 INFRASTRUCTURE
 FEDERAL
 INDUSTRIAL & COMMERCIAL
 8

Part 2: Predicting Br⁻ Impacts on FGD Materials

- Established baseline
 - -Materials of construction of all FGD components
 - -Operating history (pH, Cl⁻ conc., etc.)
 - -Current condition
 - Schedule did not allow for assessment inspections
 - -Develop Cl⁻ limits for existing materials
- Estimated Br⁻ effects on materials
 - -Limited data available for FGD conditions
 - -Relative effects of Br⁻ vs. Cl⁻ are alloy specific

- Steen, et al. (short-term pitting potential measurements)
- Sherlyn (defined a critical temperature which impacts relative Brvs. Cl⁻ corrosivity, and which correlates with PREN values)

Part 2: Predicting Br⁻ Impacts on FGD Materials (continued)

Developed alloy-specific halide relationships:

[Total Halide] = $[CI^{-}] + X * [Br^{-}]$

- -X establishes the relative weighting of Br⁻ versus Cl⁻ concentrations on potential for pitting and crevice corrosion
- -X can vary from alloy to alloy
- -Total Halide limits are then set using industry experience with Cl⁻ for each alloy
- -With limited data available, considerable professional judgment was required to establish X values

Part 2: Predicting Br⁻ Impacts on FGD Materials (continued)

- Total Halide limits not represented by single values
 - -pH, temperature, presence of scale and duration of exposure all must be considered
 - —All of these variables impact recommended time between component inspections
 - -Must consider the probability of simultaneous excursions of multiple variables outside of "normal" range (e.g., high Total Halides and low pH)
- Total Halide limits must consider lowest alloy installed in FGD systems

Example pH, Temperature, Scaling and Total Halide Relationship

				T	emperature	, °F			
					160				
					150				
					145				
					140				
Scale	Heavy	Light, continuous	None		135				
			7		125				Total Halide*,
			5.5	3,000	6,000	7,500	9,000	10,000	ppm
			5						
			4 3 2 1 0 pH	• Or • Or • Or	All parameters in blue - minimal halid corrosion risk One parameter in yellow range – moderate halide corrosion risk One parameter in red or two or more i yellow – high risk of halide corrosion; inspect soon				

URS Methodology for Assessing FGD Corrosion Risk for Bromine-based Mercury Control Technologies

POWER INFRASTRUCTURE FEDERAL INDUSTRIAL & COMMERCIAL

Results

- Units 1 and 2 FGD systems are more sensitive to Hg control system selection in spite of higher alloys of construction
 - -Closed-loop operation leads to elevated Total Halide concentrations (outside of "blue box")
- Based on 2011 test data, brominated PAC poses less of a materials risk than Br addition with coal + non-Br PAC (@2011 addition rates)
 - -Future testing with state-of-the-art PAC, optimized addition rates may change these results
 - -Mass balances can predict steady-state Total Halogens at future addition rates

Recommendations

- Implement brominated PAC injection as a near-term MATS compliance technology
 - -Determine optimal injection rates
 - -Consider Br with coal plus non-Br PAC later
- Monitor halide concentrations in FGD systems on a biweekly frequency, use Cl⁻ and Br⁻ specific analytical methods to apply "X" factor
- Update FGD component inspection frequencies as needed
 - -Use alloy-specific relationships, and

-Actual experience for Total Halide concentration, pH, temperature, scaling and duration of exposure

