

McIlvaine NOx Reduction Innovations for Coal Fired Plants

Mark Ehrnschwender November 6th, 2014

STEAG Group

STEAG GmbH

Power Operations and Engineering Services

Power O&M services Worldwide
Operations in India, Spain, Brazil, Colombia, Philippines, etc.
Ownership & Operations of solar, wind, fossil fuel, natural gas,
biogas and geothermal
Over 20,000 MW's of operation worldwide

STEAG Energy Services GmbH

Engineering and Consulting Services

Complete Plant Integration Services
Owners A/E Services
Operations in Europe, India, Turkey, South Africa and the US

STEAG Energy Services LLC

Engineering and Consulting Services (USA)

Worldwide STEAG group NOx Expert
HQ and Plants in NC - Offices in PA, IL, DC
500,000 ft² of warehouse space
60,000 m³ regenerated, 4,000 XRF's annually,
2 x 2013 VGB certified bench scale reactors

"The Basics" The SCR Catalyst / Reactor

Catalyst Oxidation Reactions

- NOx Reaction $NH_3 + NO(NO_2) \rightarrow H_2O + N_2$
- SOx Reaction SO₂ + O₂ → SO₃
- Mercury Reaction Hg + O₂ → HgO

Where / When do the reactions occur?

- NOx Reaction Quick Reaction
- SOx Reaction Slow Reaction
- Mercury Reaction Quick Reaction NO_X is preferential

What is STEAG Doing on it's Units for Mercury

- Primary Mercury oxidation is layer
- Secondary is Bromide Addition
- Re-emission is by PAC into the FGD Unit

"The Basics" Catalyst Regeneration

steag

Chemically removing De-activating compounds

Small Fly Ash Particles

i.e. Fly Ash

Dense Second-phase Coating

i.e. Calcium, Magnesium

i.e. Arsenic, Phosphorus, Sodium, Potassium

PRB

- Removal of Chemicals and lons from Catalyst
- Addition of the activating compound (Vanadium) and strength metals (Tungsten or Molybdenum) back onto the catalyst

"The Basics" Longevity of Catalyst

- STEAG has catalyst that has been regenerated 7 time (26 years in operation)
- What should a customer buy?

	Honeycomb	Plate	
Wall Thickness	> 0.8 mm	> 0.7 mm	
Tungsten or Molybdenum	>7%		
Metal Substrate	N/A	Austenitic Stainless	

- Anything less will lead to throw away catalyst!
- Catalyst Disposal Issues:
 - Ash disposed of as non-hazardous (40 CFR)
 - Ceramic Material Non-hazardous
 - Metal recycled. China working on ceramic recycle
 - Future CCP could affect this!

Innovation: Co-coupling of SCR & SNCR

STEAG is working on Strategy on STEAG units for co-coupling of SNCR with SCR.

• Need for additional removal on STEAG units 60% to 80% or 80% to 90%.

	Case 1: Stretching the SCR			Case 2: Stretching the SCR		
	No SNCR	Typical SNCR	STEAG Approach	No SNCR	Typical SNCR	STEAG Approach
Boiler Inlet	250	250	250	250	250	250
SNCR Reduction	0%	25%	50%	0%	25%	50%
SCR Inlet	250	188	125	250	188	125
SCR reduction	60%	60%	60%	80%	80%	80%
NOx Outlet	100	75	50	50	38	25
Total Reduction	60%	70%	80%	80%	85%	90%

How to achieve 50% reduction with SNCR?

- More injectors
- Live CFD modeling (STEAG Powitec System)

Innovation: In-situ Dry Cleaning in the Reactor

United States Patent No 8,268,743 B2

Removal Systems	Benefits	Challenges		
Vacuuming	Large ash removal	Top ash only		
Air Lancing	Mechanical/light ash removal	Only 4-6 inches of pluggage removal		
Mechanical Shakers	Large ash removal	On-site plate removal Honeycomb "verboten"		
Reactor Shakers	Large ash removal	Unknown long-tern reactor effects		
Scraping / Poking	Mechanical/light ash removal	Damages the catalyst surface – Logs normally need to be replaced before regeneration		
High Pressure Vash		Water reacts with SO ₃ to form sulfuric acid which deteriorates the metal substrate in plate, solidifies any remaining ash and releases iron oxide in ash to increase SO ₂ /SO ₃ conversion rate		
Dry Ice Blasting	Mechanical cleaning for all types of catalyst	Unable to undo damages caused by other cleaning techniques		

- Most effective and very safe cleaning method
- Our process has reduced pluggage from 100% down to < 5%
- Savings in Pressure Drop alone provides 6 to 8 month payback
- Successful performed on all Catalyst Types

Innovation: Regeneration & Mercury

steag

- Catalyst Re-calcination
 - Heat treatment above 800 °F but below 850 °F
 - Time is 9 to 12 hours
 - Regain strength, bond material and eliminate inherent water
- Single Impregnation of Vanadium (activating compound) with tungsten or molybdenum (strength metals)
- Mercury Testing
 - STEAG has acquired the testing facility from Martin Luther University (Halle-Wittenberg) Research before 2002
 - STEAG continues the work and has several testing contracts
- What is STEAG doing on it's Units for Mercury
 - Primary Strategy Mercury oxidation is lower layer of catalyst
 - Secondary Strategy Trim with Bromide Addition
 - Capture Oxidized Mercury in the wFGD with Re-emission is by PAC into the FGD Unit
 - STEAG has Patented Mercury removal technology for wFGD water

steac