

"Integrating HRSG & Catalyst Design For High Performance & Low Cost"

Mr. Joshua D. Gillespie

July 15, 2014

2013 ABMA Annual Meeting Environmental Session

THE POWER OF CATALYSIS

C

Range of Applications

EmeraChem is an OEM developer and manufacturer of catalytic products to control air pollution from

... in the power generation and natural gas markets

THE POWER OF CATALYSIS

>240 Combustion Turbines Oxidation Catalyst & Support Structure

>240 Catalyst Systems for GTs

GE 7H	2
GE 7FA	33
GE 7EA	3
GE FRAME 6 F	5
GE FRAME 6 B	1
GE LM6000	64
GE LM 5000	1
GE LM 2500	6
Mitsubishi 501D	2
Mitsubishi 501F	20
Mitsubishi 501G	6
Siemens SGT 5000	5
Siemens SGT 800	2
Siemens SGT 400	5
Pratt & Whitney FT-8	25
Alstom GTX 100	6
Solar TITAN 130	4
Solar TAURUS 70	7
Solar TAURUS 60	8
Solar CENTAUR 40	2
Solar SATURN 20	3
Rolls Royce TRENT 60	2
Westinghouse W251B	1
AVON MK 1533	1
VS-7	1
Unspecified GTs	33

Individual projects ranging from 24 to 2400 catalyst elements

>40,000 MW controlled by EmeraChem catalyst THE POWER OF CATALYSIS

Starting Point: Application Design (system variables that affect emissions)

• Information input

- engine name and model
- fuel type(s) and sulfur content
- water injected or evap cooling? (water quality)
- HRSG or simple cycle (no. starts/stops/yr.)
- Duct firing? Fuel type.
- exhaust mass flow rate, catalyst operating temp,
- % flow and temperature variation
- Inlet emissions, (CO, VOC, NO/NO₂, SO₂)
- performance requirements
 - <u>(% reduction CO, VOC, NO-NO₂, SO₂-SO₃)</u>
 - Start-up & shutdown performance included?
- desired warranty period and service life
- installation information;
 - NEW or REPLACEMENT
 - Gas Path Size
 - allowable pressure drop

It's possible to "over specify":

- low temperature
- very high performance
- very low pressure drop
- small gas path
- lot's of starts & stops
- long warranty period
- "cheap"

THE POWER OF CATALYSIS

Catalyst Design (catalyst variables that affect emissions)

- substrate cell geometry and geometric surface area
- wash coat formulation & loading
- precious metal formulation
- precious metal loading
- method of applying precious metals
- gas hourly space velocity

Substrate Design Variables

THE POWER OF CATALYSIS

- Cell structure geometry and surface area
- Cell density

- Pressure drop
- Diffusion bonded (10-yr mechanical warranty)

Variations in Cell Structure & Geometry

- "discrete cell"
 - diffusion bonded; 10-yr warranty
- "tortuous path"
 - loosely layered "herringbone"

CO Destruction Efficiency (%)

What is a VOC?

U.S. EPA Definition of VOC

40 CFR Ch. 1, Subpart F - Procedural Requirements, Section 51.100 – Definitions, Paragraph (S) - VOCs, Subparagraph (1)

(s) Volatile organic compounds (VOC) means any compound of carbon, <u>excluding</u> carbon monoxide, carbon dioxide, carbonic acid, metallic carbides or carbonates, and ammonium carbonate, which participates in atmospheric photochemical reactions.

(1) This includes any such organic compound *other than the following*, which have been determined to have negligible photochemical reactivity: *methane; ethane*; methylene chloride (dichloromethane); 1,1,1-trichloroethane (methyl chloroform); etc.

origin of "NMNEHC"

Similarity Between Fuel Gas and Exhaust Gas THC Composition

THC Constituent	Fuel Composition	Exhaust Composition	
Methane	82.0%	79%	
Ethane	12.4%	11%	
Ethylene		3.0%	
Propane	4.42%	3.9%	products of
Propylene		0.5%	incomplete
Butane	0.98%	0.9%	combustion
Formaldehyde		2.0%	
Acetaldehyde		0.0%	

Estimating Catalytic Performance on VOCs

Not included in measurement of VOCs

Catalytic performance is different for every compound.

Overall performance is a weighted-average.

THE POWER OF CATALYSIS

Hydrocarbon Conversion over Pt Oxidation Catalyst

Estimating Catalytic Performance on VOCs

Overall performance is a weighted-average

Low Catalyst Temps Impose Other Risks to Owner

- <u>BEWARE</u>: Below 600°F a number of contaminants are prone to accumulation
 - Even common masking agents (sulfur) could be problematic
 - If mixed with high temp cases, desorption is possible
- Of >240 installations the few that experienced high levels of contamination
 - All below 600°F
 - All accumulated enormous amounts of sulfur and phosphorous

High Surface Area Coatings

55 football fields of surface area in every cubic foot of catalyst!

THE POWER OF CATALYSIS

Examples of Chemical Contamination

Case Study #1: Sulfur Accumulation at Low Temperature

Turbine Make & Model	GE 7EA
Catalyst Operating Temperature	505 (unfired) - 615F (fired)
Catalyst GHSV	106,000 - 163,000

	14,613 mg S/ft3
Sulfur Accumulation	after 250 hours (10 days)
Sullur Accumulation	(exacerbated by carbon
	buildup)

- Operation typically <600F
- Pipeline quality natural gas
- H2S in evap water

14,613 mg sulfur accumulated on every ft3 of catalyst in 250 hours (10 days)!!

THE POWER OF CATALYSIS

Effects of Sulfur on Catalyst

___()

<u>Effect on precious metal</u>: <570°F SO₂
 chemisorbs on Pt sites & reduces sites for CO

CO

SU

"steric hindrance" –large sulfate group adsorbed on the surface physically interferes with CO molecules reaching a platinum crystal

 Effect on substrate: SO₂ converted to SO₃ and reacts with Al₂O₃ in the wash coat forming Al₂(SO₄)₃ which damages structure THE POWER OF CATALYSIS

Effects of Sulfur on Precious Metals

- Physically blocks access
- Reduces catalytic activity
- Platinum (Pt) has durability and poison resistance
 regenerable with chemical washing
- Palladium (Pd) vulnerable to permanent
 <u>deactivation</u>

- weak & unpredectable response to chemical washing

Case Study #2: Sulfur Accumulation at Low Temperature

Turbine Make & ModelAlstom GT-26Catalyst Operating Temperature500 - 640F (mostly <600F)</td>Catalyst GHSV65,000 design (130,000 max)

Sulfur Accumulation	13,624 mg S/ft3 after 238 hours (10 days)
---------------------	--

- Operation typically <600F
- Sulfur higher than pipeline quality natural gas

Case Study #3: Sulfur Accumulation At Low Temperature

Turbine Make & Model	GE 7FA
Catalyst Operating Temperature	504 (unfired) - 647F (fired)
Catalyst GHSV	118,000 - 197,000

Sulfur Accumulation	19,036 - 20,943 mg S/ft3 after 22 days
---------------------	---

- Operation typically <600F
- pipeline quality natural gas

20,000 mg sulfur accumulated on every cubic foot of catalyst in 22 days!!

THE POWER OF CATALYSIS

Platinum Catalyst Responds to Chemical Washing

Catalyst Type: Platinum Oxidation Condition: Temp = 525 F

	GHSV	Pre-Wash CO Performance	Post-Wash CO Performance		
(HI-flow)	357,000	6.4%	62.5%		
	200,000	12.7%	85.8%		
(LO-flow)	150,000	15.7%	93.8%		
	Catalyst Manufacturer: EmeraChem, LLC				
	Date of Manufacture: June 2000				

Selecting Precious Metals for Oxidation Catalyst

	Platinum	Palladium
CO	Best	Good when new
VOCs	Best	Good when new
Light-off temp	250-400°F	400-650°F
Catalytic activity	High	Moderate
Thermal stability	Good to 1200°F	Good to 1200°F
Poison resistance	High	Low
Response to chemical washing	Good	Poor
Durability	High	Low to moderate
Price per troy oz.	\$1560	\$690

THE POWER OF CATALYSIS

Oxidation Performance Platinum vs. Palladium

CO DRE

THE POWER OF CATALYSIS

What effect has platinum escalation had on catalyst design and price?

Escalation of Platinum

THE POWER OF CATALYSIS

Example: GE7FA gas turbine

Exhaust

- 3,603,880 lb/hr exhaust
- 20 ppmv CO at GT exhaust
- 2.0 ppmv CO at stack
- 90% CO removal efficiency
- Catalyst
 - GHSV ~200,000
 - 247 cuft catalyst

Wer of catalysis

Effect of Pt Price on Catalyst Design and Price

- August 2001
 - Platinum was similar in cost to the foil substrate
 - Catalyst companies used more platinum rather than more substrate volume
 - Platinum loading of 28 to 42 g/ft3 was common
 - Extremely durable
 - High-performance
 - Low-temperature light-off
 - Sulfur tolerant & regenerable
 - Tolerant of many start/stop cycles
 - 10-year life

9 – Pt cost for the GE 7FA was ~\$136,000 for 36 g/ft3 THE POWER OF CATALYSIS

Effect of Pt Price on Catalyst Design and Price

- August 2001
 - Pt loading 36g/ft3 costs \$136,000
- May 2008

- Same Pt loading would have cost ~\$633,000
- Outcry from end users! "No way!"
- Holding cost to \$136,000 would buy <8 g/ft3
 - Too risky; vulnerable to low-T and sulfur; low durability
- Some catalyst companies switched to palladium
 - \$459/TO vs. \$2,212 for platinum
 - Light-off temp higher than Pt (poor for startup emissions)
 - Poisoned by sulfur; not responsive to washing
 - Low durability

THE POWER OF CATALYSIS

Effect of Pt Price on Catalyst Design and Price

- August 2001
 - 36 g/ft3 loading for **\$136,000**
- May 2008

- 36 g/ft3 for **\$633,000**; <8 g/ft3 for \$136,000
- Today, January 2013
 - Pt loading of 36 g/ft3 would cost ~\$447,000 (too costly)
 - Spending \$136,000 would buy 11 g/ft3 (too low)
 - Improved substrate & wash coat
 - Improved Pt application techniques (Pt size, distribution)
 - Restrictions on low-temp, sulfur, no. starts/stops
 - ⁴¹ 10-yr expected life reduced to 3+ years THE POWER OF CATALYSIS

Simultaneous Collateral Reactions

- NO-NO₂ Oxidation
 - Favors NO₂ at low temps; NO at high temps
 - Effects SCR reactions, NH₃ consumption
 - Destroys sulfur bound carbon nanoparticles
- SO₂-SO₃ Oxidation
 - Increases with temperature
 - Precursor to particulate matter
 - Ammonia slip reacts to form bi-sulfate particulate after SCR
- Catalyst formulations can suppress these

Overall Effect of Operating Temp on Catalyst Reactions

THE POWER OF CATALYSIS

Putting it all together...

How does HRSG temperature effect catalyst design and price?

Effect of HRSG Temperature Zone on Oxidation Catalyst Performance

Effect of HRSG Temperature Zone on Oxidation Catalyst Performance

Effect of HRSG Temperature Zone on Oxidation Catalyst Performance

Effect of HRSG Temperature Zone on Catalyst System Price

- Examine EmeraChem catalyst in >70 large GTs
 - GE 7H, 501G
 - 7FA, 501F
 - 7EA, 501D5A
- Three temperature ranges
 - 500-650°F
 - 700-825°F
 - 850-1000°F
- Example of a GE7FA.05 at 3 temperatures

Effect of HRSG Temperature Zone on Catalyst System Price

- Flow rate: 4,024,000 lb/hr
- 90% CO reduction (10 to 1 ppm)
- 67% VOC reduction (3 to 1 ppm)
- Gas path: 72'x27'
- Consider three temperature options:
 - 550°F
 - 790°F
 - 1000°F

Effect of HRSG Temperature Zone on Catalyst System Price

	550 F	790 F	1000 F
Catalyst GHSV*	175,000	200,000	215,000
Catalyst Volume	310 ft3 most catalyst due to lower activity	270 ft3	250 ft3 least catalyst due to high activity
Platinum Loading	~1.5X more Pt due to likely accumulation of contaminants	Х	Х
Frame Material	carbon steel	carbon steel	stainless steel

* Catalyst GHSV is approximate for illustration only, based upon a given cell density and formulation.

Effect of HRSG Temperature Zone on Catalyst System Price

Catalyst and frame prices are approximate for illustration only, based upon a given exhaust characteristic, catalyst design, gas path and Pt price. THE POWER OF CATALYSIS

Evaluate all operating cases (temp, flow, performance)

PARAMETER	Units	DESIGN BASIS	100	102	111	112	126	129
							l	
GT Load		0 50035542	100%	50%	50%	100%	50%	50%
GT Evel Type		Natural Gas	Natural Gas	Natural Gas	Natural Gas	Natural Gas	Natural Gas	Natural Gas
Ambient Temp	٥F	20	60	60	100	0	80	100
Temp at Catalyst	0F	832	835	824	955	845	958	977
EXHAUST CHARACTERISTICS FROM GT		032	000					
GT Flow with Tempering Air	lb/hr	647 792	866 129	629.703	522.225	874.486	517.015	492.086
Gas Composition	% vol	041,102	000,120					
02	70 401	14.55	13.75	14.79	13.47	14.06	13.81	13.66
H2O		5.94	8.76	6.72	9.85	6.26	8.42	9.19
N2		75.65	73.54	74.87	72.70	75.58	73.81	73.20
CO2		2.95	3.07	2.72	3.09	3.19	3.07	3.07
Ar		0.91	0.89	0.90	0.87	0.90	0.88	0.88
Total		100.00	100.00	100.00	99.99	99.99	99.99	99.99
MW	lb/lb-mole	28.57	28.27	28.46	28.15	28.55	28.31	28.22
Flow Rate (wet)	scfh	8,593,971	11,610,925	8,384,926	7,030,717	11,607,285	6,922,442	6,608,366
Flow Rate (dry)	scfh	8,083,203	10,594,153	7,821,332	6,337,931	10,880,855	6,339,469	6,001,203
O2 Concentration Dry	%	15.47	15.07	15.85	14.95	15.00	15.08	15.04
CO AT CATALYST INLET								
CO as ppmvd at 15% O2		70.10	25.02	70.20	69.99	24.99	69.99	69.99
CO Flow	lb/hr	38.6	19.4	34.7	33.1	20.1	32.3	30.8
CO AT CATALYST OUTLET								
CO as ppmvd at 15% O2		5.5	5.5	5.5	5.5	5.5	5.5	5.5
CO Destruction Required	%	92.2	78.0	92.2	92.1	78.0	92.1	92.1
VOC AT CATALYST INLET								
VOC as ppmvd at 15% O2		8.41	3.00	8.42	8.40	3.00	8.40	8.40
VOC AT CATALYST OUTLET								
VOC as ppmvd at 15% O2		2.00	2.00	2.00	2.00	2.00	2.00	2.00
VOC Destruction Required	%	76.2	33.4	76.3	76.2	33.3	76.2	76.2
ADDITIONAL DATA								
Required Pressure Drop	"H₂O	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Expected Pressure Drop	"H₂O	0.7	1.0	0.7	0.7	1.0	0.7	0.7

DETERMINE "GHSV" FOR <u>EACH</u> FLOW RATE AND TEMPERATURE TO ACHIEVE REQUIRED CO & VOC PERFORMANCE

Determine "GHSV" for <u>each</u> flow rate & temp to achieve CO & VOC performance

THE POWER OF CATALYSIS

Convert GHSV into catalyst volume

- GHSV varies by
 - performance level
 - compound
 - temperature
 - formulation and loading of precious metals
 - formulation of wash coating
- catalyst volume (*cubic feet*) calculated by dividing volumetric gas flow rate (*s-ft³/hr*) by GHSV (1/hr)

 $\frac{8,593,971 \text{ scfh}}{165,000 \text{ hr}^{-1}} = 52.1 \text{ ft}^3$

Calculate the required catalyst volume for <u>each</u> case

Remember...

- Catalyst performance dictates catalyst volume
 - (for a given cell density, Pt loading, wash coat, etc)
- Once catalyst volume is determined
 - Changing duct size results in thicker or thinner catalyst (to maintain volume)
 - Large frontal area and thin vs. small area and thick
- However, 100 ft³ of catalyst in 100 modules costs less than 100 ft³ in 120 modules
- There is a practical *minimum* thickness

Performance Over Time

THE POWER OF CATALYSIS

Origin of "Safety Factor"

- type of combustion turbine
- start-up profiles (no. starts/stops/yr.)
- water injection & evap cooling
- exhaust gas temperature
- engine fuel composition particularly **Sulfur**
- seals, leakage and bypass
- contaminants present in engine exhaust
- effect of engine lube oil on catalyst
- Owners don't report data over time for every combination

Thank you from EmeraChem

THE POWER OF CATALYSIS