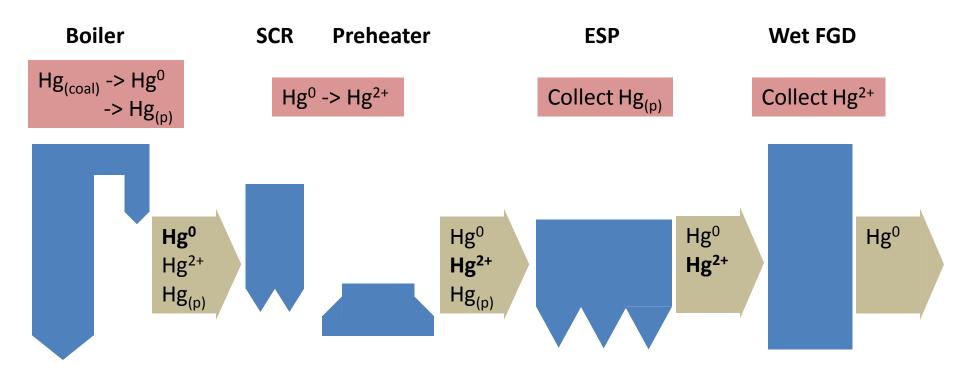
109

Lessons from Forty Plant-Months of "Co-Benefit" Mercury Abatement Using **Existing Pollutant Control Equipment EUEC 2011** Multi-Pollutant Control, Session C4 Jonathan O. Allen, ScD, PE Principal, Allen Analytics LLC **M. Brandon Looney**, PE **Project Manager, Southern Company** Corey A. Tyree, PhD **Project Manager, Southern Company**

Motivation and Outline


Mercury MACT rule proposal expected March 2011 Will plants meet potential MACT limits with only "co-benefit" Hg control? How variable is "co-benefit" mercury control? How can "co-benefit" mercury control be improved?

- Study plants and methods
- Variability of Hg emissions
- Statistical analysis of Hg emissions
- Conclusions

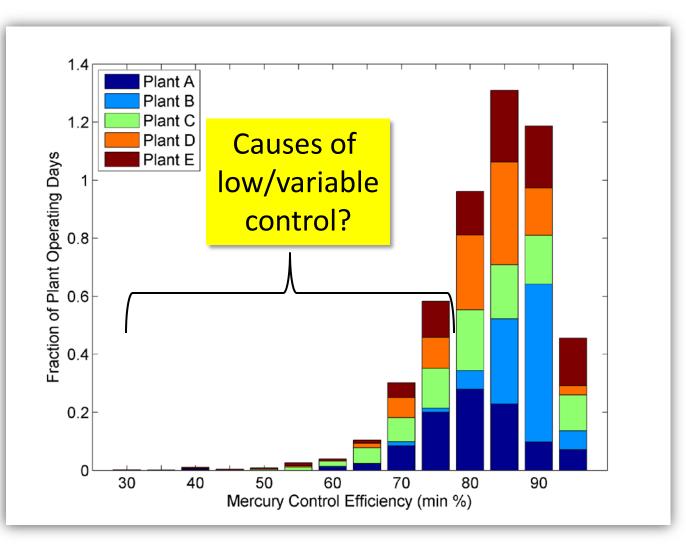
Study Plants

- Five Flagship Coal-Fired Units
- Capacities: 750 950 MW
- Single Boiler with SCR, cold-side ESP, wet FGD
- Central Appalachian Eastern Bituminous coals
 - Cl: 724 [84 2352] ppm
 - Hg: 86.7 [20 190] ppb
 - Hg: 6.56 [1.5 14.5] lb/TBtu potential emissions

Hg Oxidation and Wet Capture

 Processes across multiple units that are largely unengineered and uncontrolled for Hg

Study Method

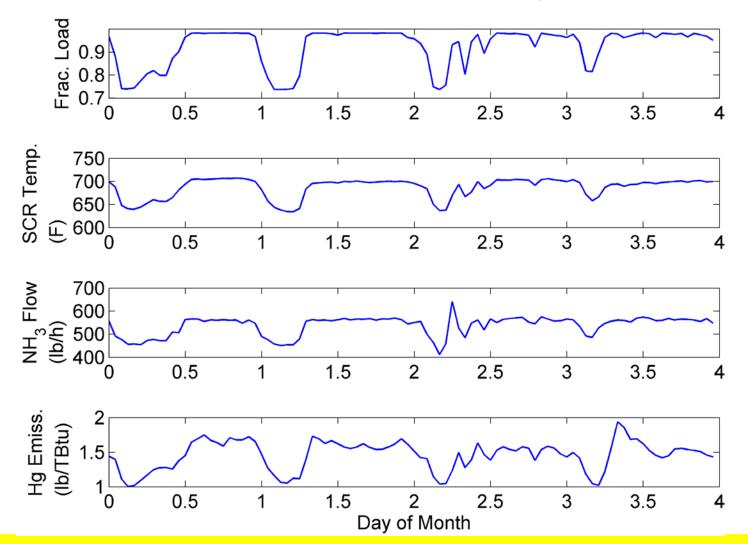

- Retrieve operational and emissions data
 - Approx. 40 variables for each plant: Boiler, SCR, ESP, wFGD, CEMS
 - 109 plant-months of data in 2008 2010
 - 1-min data, ~2x10⁸ data points
 - Hg and Cl inputs from coal deliveries
- Robust quality assurance
 - Inspected every data point
 - Screened CEMS calibrations
 - Compared high emission events with plant logs
- Retrospective data analysis
 - Coincidental and correlated observations
 - Develop physically consistent explanations

Mercury Oxidation and Wet Capture Works


Average 85.5% Hg control for \$0 marginal cost

Hg control > 90% achieved on 34% of the study days

Control < 80% for some days for every plant



Mercury Control Varied with Load

Load affects downstream AQCS; likely Hg oxidation in SCR

Load Affected SCR Operation

We suggest that Hg oxidation efficiency decreases at full load due to: \downarrow residence time, \uparrow NH₃ flow, \uparrow SCR temperature

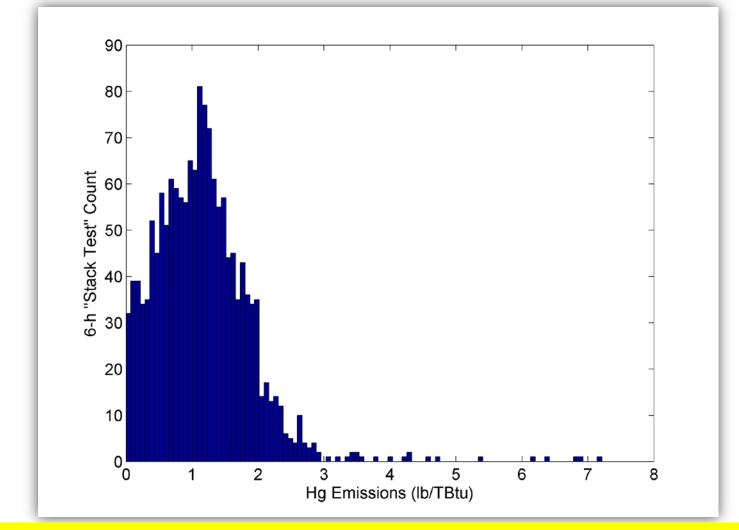
Hg Oxidation

- Hg control limited by oxidation state exiting SCR $\eta \leq \frac{[Hg^0]}{[Hg^0] + [Hg^{2+}] + [Hg_{(p)}]}$
- Hg oxidative capacity appears to limit co-benefit control
- Engineered Hg oxidation process
 - Catalyst modification
 - Monitor oxidation state
 - Control process parameters
- Southern Co. continues Hg oxidation research efforts

Parametric Statistics

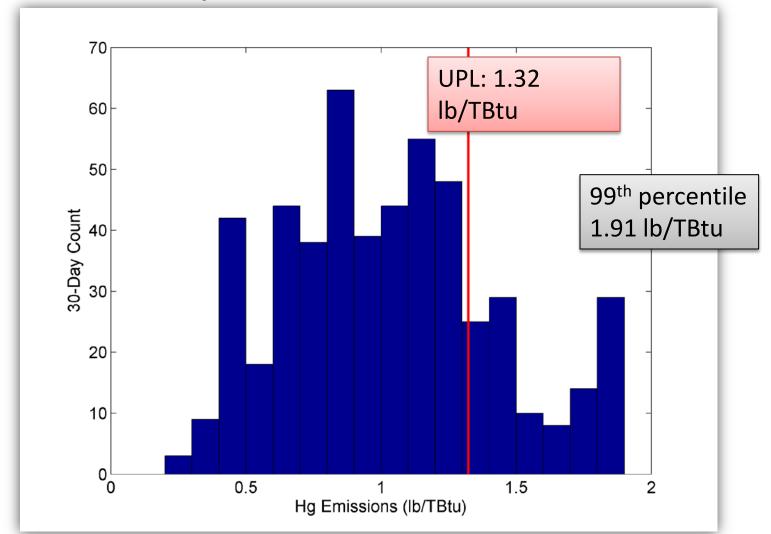
- 6-h emission data at full load with AQCS operating
 - load \ge 90%, NO_x control \ge 80%, SO₂ control \ge 90%
 - 5000 "stack test" data points
- Upper Performance Limit (UPL) equation

$$\overline{x}_{2,0.99} = \overline{x}_1 + t \ s \ \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$


- Past emissions mean: \overline{x}_1 , std dev: s , elements: n_1
- Future emissions (99% percentile): $\overline{\chi}_{2,0.99}$, elements: n_2
- t-statistic (99%, $n_2 1$ degrees of freedom): t
- Assumes independent emissions data
- Assumes (log)normally distributed emissions data

Upper Performance Limits

		Hg Emissions (Ib'/TBtu)		Upper Performance Limit (99% CI)			
				Normal Distribution		Lognormal Distribution	
Plant	"Tests"	Mean	р	Monthly Average (120)	Annual Average (1350)	Monthly Average (120)	Annual Average (1350)
Α	1460	1.14	0.52	1.26	1.19	1.15	1.05
В	234	0.95	0.47	1.07	1.03	0.97	0.92
С	1547	1.16	0.74	1.32	1.22	1.09	0.97
D	285	1.24	0.65	1.40	1.34	1.31	1.23
E	1541	0.92	0.73	1.08	0.98	0.823	0.74


Test parametric statistical assumptions: How well to 99% UPLs match emissions data?

Nonparametric Statistics – Plant C

- Data not normally distributed; p < 0.001 from Jarque-Bera test
- Normal distribution does not capture hours of low control
- Low control hours not independent (i.e. multi-day re-emission events)

30-Day Emissions – Plant C

Parametric statistics UPL is 78th percentile

Annual Emissions – Plant C

Annual averages starting at each calendar month

(N = 253 – 286)	1.28	Annual UPL		
	1.21	1.22 lb/TBtu		
	1.18			
	1.10			
	1.03	One of 44 rolling annual		
	1.02	averages > UPL		
	1.00			
	0.92	13 of 44 within 10% of UPL.		
	0.90			
	0.89			
	0.88			

Conclusions – Co-Benefit Technology

- Analyzed long-term data from 5 plants with co-benefit controls (SCR+ESP+wFGD)
- The "co-benefit" process works (85.5% Hg control) but is variable due to variations in:
 - Hg oxidation, Hg re-emission, coal composition, SCR startup, seasonal NO_x control, and others
- Results informing upcoming technology decisions at Southern Company

– i.e. can Plant X meet Hg emission limit of y over period z?

• To reduce variability and periods of low control: engineer and control oxidation and wet capture processes - *these are engineering science projects*

Conclusions - Statistics

- Parametric statistics proposed to estimate long term emission limits (UPL) from stack tests
- Emissions do not fit normal (or lognormal) distribution
- Top-performing plants may not meet long term emission limits based on their stack tests
- Consider:
 - CEMS data to scale stack tests to long term emission limits
 - Long-tailed distribution to describe stack test data

See also: Tyree and Allen, "Determining AQCS Mercury Removal Co-Benefits", *Power Magazine*, 154(7):26-32, July 2010.

jon@allen-analytics.com 520 881 9688

Allen Analytics LLC

mblooney@southernco.com

205 257 6162

catyree@southernco.com 205 257 2425

Questions?