MATS Summary

- Compliance Deadline April 2015
 - Hg emissions limits for Existing Sources:
 - 1.2 lb/TBtu (fuels > 8,300 Btu/lb)
 - 4.0 lb/TBtu (fuels < 8,300 Btu/lb)

- Compliance Reporting
 - Continuous monitoring – 30 day rolling avg
 - CEM
 - Sorbent Traps
 - LEE monitoring (if eligible)
What are you measuring?

- Consider how you are reaching the limit

- Mercury emissions will depend primarily on the following variables:
 - Fuel composition
 - Boiler load
 - Air Pollution Control Devices
 - Active Mercury Controls
Fuel Composition

- Fuel inputs will significantly change mercury emissions
- Trends are established but fuel can be highly variable
 - Mercury content
 - Sulfur content
 - Chlorine content
 - Ash content and make-up

Boiler Load

- Boiler Load will significantly change mercury emissions
 - Effects:
 - Fly ash (LOI)
 - Temperatures
 - Fluid dynamics
 - Time for Hg adsorption
 - Mixing with reactants
Air Pollution Control Devices

- Existing APCDs will effect mercury removal
 - NOx control
 - LOI (boiler controls)
 - NH₃ and temperature
 - Particulate Control
 - Contact time effected by cleaning cycles
 - SOx control
 - SO₃ and halogen concentration (DSI)
 - Absorption and reemission (WFGD)
Monitoring Options

- Bottom line: mercury emissions will vary more than other monitored pollutants
 - How do you want to operate your plant?
 - Sorbent Trap System
 - Passive monitoring
 - Less expensive
 - Simple to operate and QA/QC
 - Continuous Emission Monitor
 - Active monitoring
 - More expensive
 - Requires detailed attention to operate
Monitoring Options

- Now add in another factor:

 Active mercury Controls

 - Highest level of effect on mercury emission
 - Will interact with inherent plant operation
Active Mercury Controls

1. Boiler Additives
2. Sorbent Injection
3. Scrubber Additives
Keeping Track

- Continuous mercury monitoring could provide valuable feedback
 - Trends for co-benefits
 - Feedback loops on active controls to modify injection rates with changes to the discussed variables
 - Saves upfront costs
 - Reduces waste

- Must implement proper training and calibration
Recent Hot Topic Hour

- Correlate low/variable control to a cause
 - Full Load:
 - Increased Temp
 - Decreased RT
 - Increased NH$_3$

→ Develop a solution

Non-Halogenated Superior Mercury Capture

US Manufacturer

Cost Effective

Engineered Solutions
Thank you!

Please visit our website at: http://www.carbonxt.com

Contacts

Heather Byrne, PhD, PE
R&D Director
Ph: 352-378-4950
Fx: 352-378-4951
Cell: 352-366-4036

David Mazyck, PhD
CEO
Ph: 352-378-4950
Fx: 352-378-4951
Cell: 352-494-6350