

Water-Energy Management Research and Development

Barbara Carney

Project Manager, Crosscutting Research Division

November 13, 2014

NATIONAL ENERGY TECHNOLOGY LABORATORY

Power Plant Water Program 2001-2013

Innovations for Existing Plants

Strategic Center for Coal

Barbara Carney <u>carney@netl.doe.gov</u>

Non-Traditional Sources of Water

Alternative Sources of Water

- Treated Municipal Wastewater
- Mine Pool Water
- Produced Water oil and gas & brine from carbon sequestration

Panda Brandywine Power Plant

McGrath Saltwater Disposal Facility

Pittsburgh Coal Seam

Water Reuse and Recovery

Use of Waste Heat

Coal Drying

Ammonia Bottoming Cycle
– Kotzebue, Alaska

Great River Energy Coal Creek Station

Humidification/Dehumidification
for water desalination

Flue Gas Cooler

- Waste Heat Integration with Solvent Process for CO₂ Removal (Southern Company-Plant Barry)
- Mitsubishi--several installations in Japan
- Captures waste heat at APH outlet (300 F to 200 F)
- Reheat scrubbed flue gas to eliminate visible plumes
- Carbon steel construction, corrosion mitigated by ash/SO₃
- 30% less scrubber makeup water
- Gaseous SO₃ 13 ppm to <1 ppm
- PM 0.03 lb/MMBtu to 0.005 lb/MMBtu
- 10% flue gas volume reduction, ID fan 2" additional pressure drop
- No visible plume.

Recovery of Water from Flue Gas

Absorption with a Desiccant

Advanced Cooling Technology

SPX ClearSky Plume Abatement

Water-Energy Management Research and Development

Area of Interest 1

"Innovative Concepts for Managing Water in Fossil Fuel Based Energy Systems " Subtopic 1-A "Utilization of Low Grade Heat within Existing Power Generation System"

Projects started October, 2014

Forward Osmosis (FO) Process Utilizing Low Grade Heat: Applications in

Power Plants Carnegie Mellon University

Establish rigorous models of the temperature and heat duty of the draw solute recovery system integrated with power plant waste heat to determine FO feasibility.

The COHO (CO₂--- H₂O) – *Utilizing Low-Grade Heat and CO₂ at Power Plants for Water Treatment* - Porifera

Waste heat used to treat degraded water and capture CO_2 from flue gas.

Simultaneous Waste Heat and Water Recovery from Power Plant Flue Gases Institute of Gas Technology

Transport Membrane Condenser (TMC)

Media & Process Technology ceramic nanoporous membrane to remove waste heat and water from flue gas.

Development of a Field Demonstration for Cost-Effective Low-Grade Heat Recovery and Use Technology Designed to Improve Efficiency and Reduce Water Usage Rates for a Coal-Fired Power Plant

Southern Company Services, Inc., Electric Power Research Institute, URS Group

Develop system-level concept that integrates and utilizes waste heat and improves heat transfer.

Addresses the viability of deploying innovative conversion concepts to large-scale power generation systems.

Addresses innovative concepts for utilization of low-grade heat, including facilitation of water treatment, bottoming cycles, and low-cost refrigeration.

Reduces water intake relative to current power practices.

Develops a cost-benefit analysis for large-scale power generation.

A technology recommendation will be made and costs will be developed for a field test of a combined heat-recovery / use process at a Southern Company facility.

