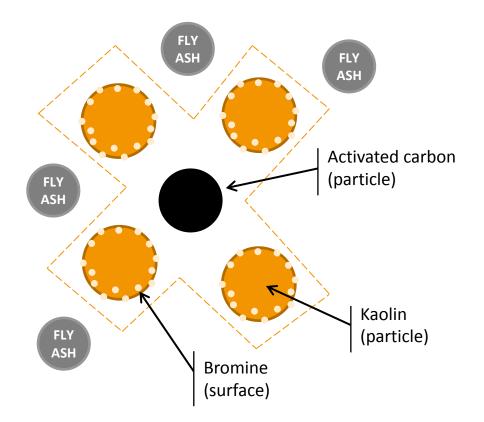
BASF's Mercury Sorbent HX™ A Mercury MATS Compliant Technology

William Hizny, Fabien Rioult PhD, Xiaolin Yang PhD

EUEC 2014 February 3 - 5, 2014 Phoenix, AZ

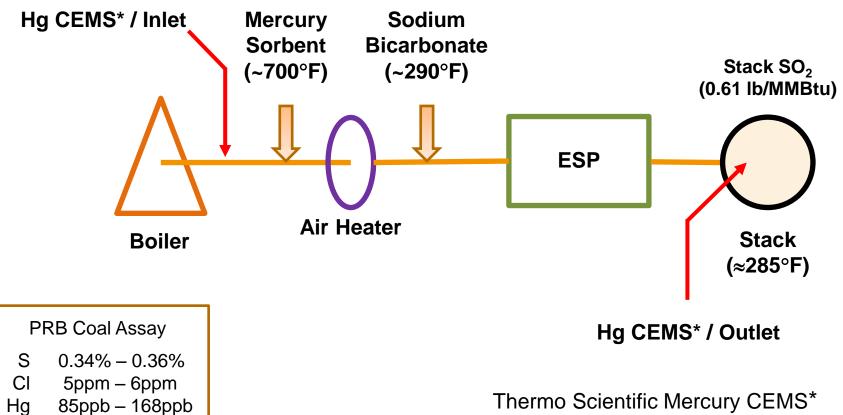


Overview

- Mercury Sorbent HX[™]
- MATS compliant mercury emissions demonstrated
 - Review of field trials
 - An established pattern of compliant performance
- Preserved fly ash properties in concrete
- A "low carbon in the fly ash" solution for mercury emissions compliance
- Summary

Mercury Sorbent HX[™] is a brominated mineral sorbent enabling a low carbon solution for mercury emissions compliance

- Macroporous mineral selected to optimize bromine utilization in system
- Untreated PAC offers uninhibited access to mercury capture sites
- Bromine content provides sufficient mercury oxidation with minimal potential impact on balance of plant


Mercury Sorbent HX[™] Field demonstration programs

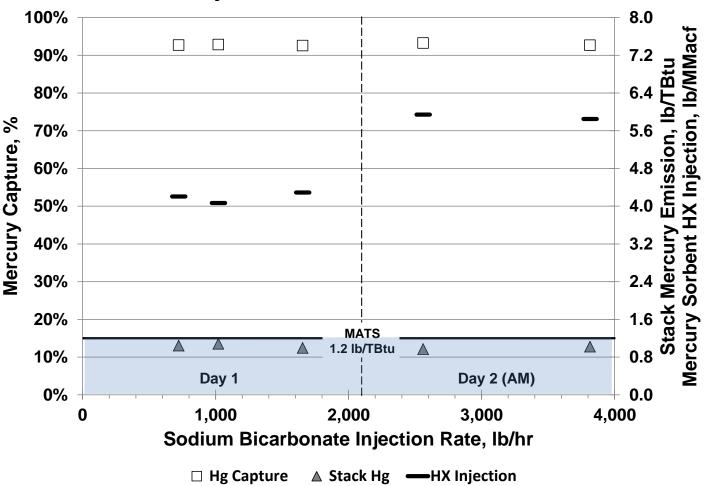
Α	В	С
Powder River Basin	Powder River Basin	Powder River Basin
800 MW	200 MW	300 MW
ESP	ESP	Fabric filter
No	Yes	No
n/a	Sodium bicarbonate	n/a
Upstream air preheater	Upstream air preheater	Upstream air preheater
n/a	Downstream air preheater	n/a
Eductor	Rotary valve	Rotary valve
Yes	Yes	Yes
	 Powder River Basin 800 MW ESP No n/a Upstream air preheater n/a Eductor 	Powder River BasinPowder River Basin800 MW200 MWESPESPNoYesNoYesn/aSodium bicarbonateUpstream air preheaterUpstream air preheatern/aDownstream air preheaterEductorRotary valve

Mercury Sorbent HX[™] Equipment schematic – Site B

[* CEMS = Continuous Emissions Monitoring System]

Mercury Sorbent HX[™] Test matrix – Site B

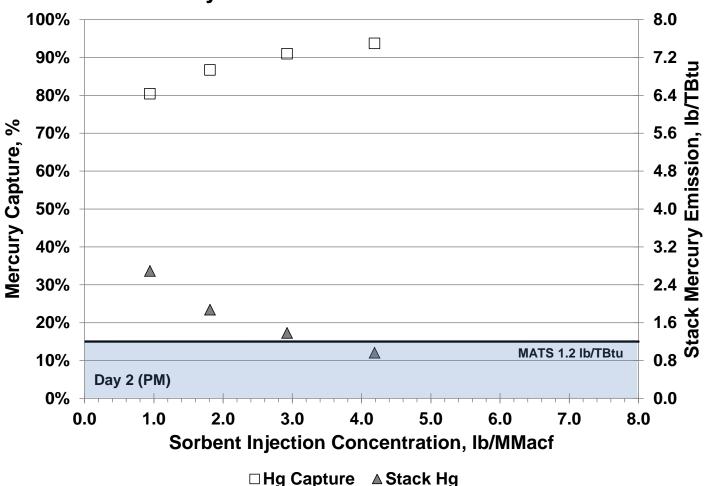
Test program	1	2
Sodium bicarbonate injection	On	Off
Injection methodology	Parametric	n/a
Mercury sorbent injection	On	On
Injection methodology	As needed for MATS Hg compliance	Parametric



Portable injection systems used for dry sorbent and mercury sorbent injection

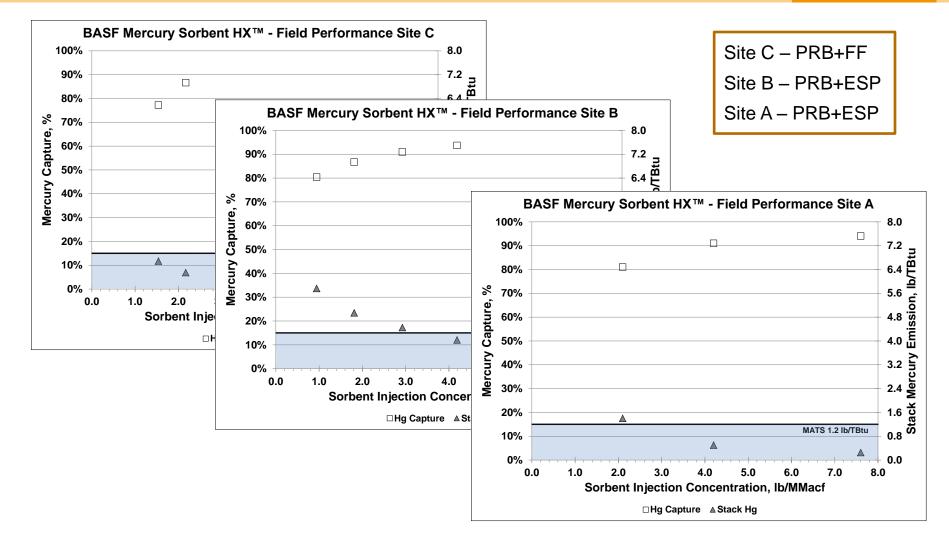
Test Program 1 – Parametric SBC injection with MATS mercury compliant emissions

- Steady intraday mercury sorbent injection rates for MATS compliance
- Analysis inconclusive as to cause(s) of step change in mercury sorbent injection rate between successive days


Dual Injection - Field Performance Site B

7

Test Program 2 Parametric injection of Mercury Sorbent HX™



- Parametric curve based on hourly average mercury emissions
- Responsiveness confirmed that
 Mercury Sorbent
 HX[™] flowed well
 through an
 injection system
 nominally
 designed for
 PAC

BASF Mercury Sorbent HX[™] - Field Performance Site B

Mercury Sorbent HX[™] demonstrated an established pattern of compliant performance

ASTM C 457 metrics determine concrete compatibility of mercury sorbents in fly ash

Concrete Sample Mixes		
Cement Source	Lehigh Mitchell Type I/II	
Cement, lb/yd ³	450	451
Fly Ash (Source)	Class C (Site A)	
Entrained Mercury Sorbent	None	BASF Mercury Sorbent HX™
Sorbent in Ash	n/a	1%-wt
Fly Ash, lb/yd ³	113	113
Replacement, %	20	20
Sand, lb/yd ³	1343	1344
Stone, lb/yd ³	1753	1755
Water, lb/yd ³	254	254
AEA*	BASF MasterAir® AE 90	
AEA* (oz/cwt)	1.60	2.20

...after 60 minutes agitation ...after initial mix **Right amount** Right **Right spacing** size of of of air voids? air voids? air voids? **Concrete Air** Specific **Spacing Factor** Volume Surface Area

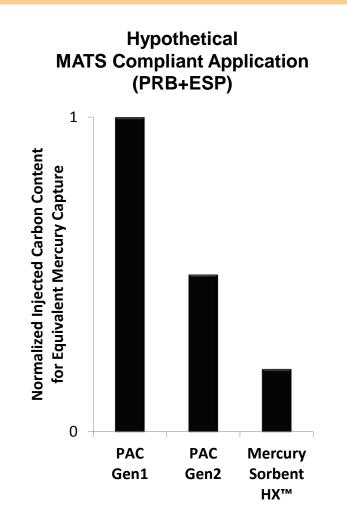
 $> 600 \text{ in}^2/\text{in}^3$

<u>></u> 3%

[* AEA = Air Entraining Admixture]

< 0.008 in

BASE


Fly ash mixed with Mercury Sorbent HX[™] demonstrated stable entrained air properties

Specific Surface Area, in²/in³ Spacing Factor, in Concrete Air, % 7.0 0.004 900 PASS PASS PASS 6.0 800 0.006 5.0 700 0.008 0.010 4.0 600 3.0 500 0.012 2.0 400 0.014 FAIL FAIL FAIL 1.0 300 0.016 Sample 1 Sample 1 Sample 2 Sample 2 Sample 1 Sample 2 Fly ash Fly ash Fly ash Fly ash Fly ash Fly ash only containing containing only containing only 1%-wt BASF 1%-wt BASF 1%-wt BASF Mercury Sorbent HX[™] Mercury Sorbent HX™ Mercury Sorbent HX™ **Threshold Value** After Initial Mixing After 60 Minutes Agitation

BASE

Mercury Sorbent HX[™] is a "low carbon *in the fly ash*" solution for MATS

The Chemical Company

- Mercury Sorbent HX[™] achieves mercury MATS compliance at an injected carbon level significantly lower than even the latest generations of PACs
- As a novel solution that balances mercury control and fly ash quality, the Mercury Sorbent HX[™] patent has been allowed by the United States Patent and Trademark Office (12/2013)

Note: Relative values based on comparative study of published technical literature for PRB coal-fired units equipped with a cold-side ESP.

Low carbon = Low abrasion Mercury Sorbent HX[™] less abrasive than PAC

Einlehner Abrasion Test* Stirring Staff **Before Suspension** with sorbent Test* After Head with PVC coating **Bronze Wire** Test*

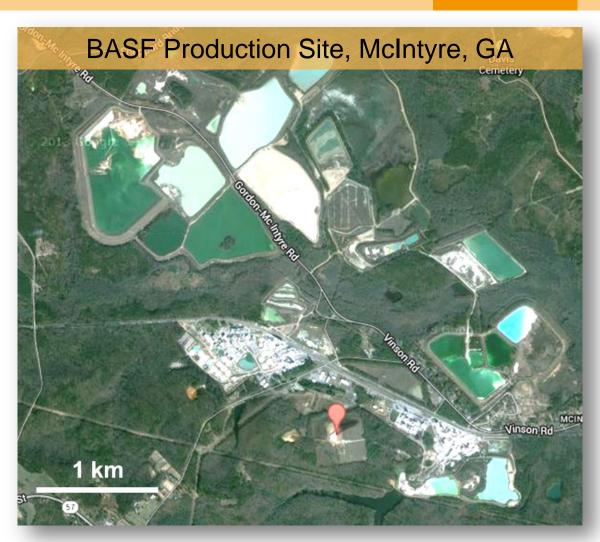
Key metric: weight loss of bronze wire disc per fixed number of revolutions Higher values = More abrasion Pneumatic transport of mercury sorbents may cause abrasion and erosion of the conveyance system over time

Material	mg_loss / 100k revolutions
Mercury Sorbent HX™	13.8
PAC	53.8

Mercury Sorbent HX[™] is almost 4 times <u>less</u> abrasive than PAC

[* Generic test photos; for illustration purposes only]

I BASE


Summary

- Mercury Sorbent HX[™] consistently delivers high mercury removal to achieve MATS compliant mercury emissions
 - Demonstrated on both electrostatic precipitator and fabric filter equipped units
- Mercury Sorbent HX[™] differentiates itself as a "low carbon in the fly ash" solution for mercury emissions compliance
 - Preserves the salable properties of fly ash for concrete applications
 - Petrographic analysis confirms air-void system for freeze-thaw durability
 - Less abrasive material than PAC

BASF, ready to supply...

- In 1908, kaolin operations began in McIntyre, Georgia and have grown over the years to yield 4 plants and numerous mines
- BASF leverages its expertise in materials science to provide a unique innovative solution for mercury capture
- BASF works closely with the utilities in the organization of their trials
- Mercury Sorbent HX[™] can be supplied in supersacks, trucks, or trains

Questions / Acknowledgment

Fabien Rioult Ph.D. Business Development Mgr., Clean Air fabien.rioult@basf.com 732-205-5177 mercury@basf.com www.catalysts.basf.com/mercury

BASF would like to acknowledge the utilities that graciously extended an opportunity to demonstrate Mercury Sorbent HX[™]. We have respected their request for anonymity.

BASF also would like to acknowledge United Conveyor Corporation (UCC) for conducting some of the trials discussed in this paper.