GAS-SIDE OPTIMIZATION OF FOSSIL-FIRED POWER GENERATION

PETER SPINNEY

O

MCILVAINE HOT TOPICS

WEDNESDAY, NOVEMBER 8, 2017

THE POWER INDUSTRY IS CHANGING

Generational Turnover in Equipment and Staff 30% of the electric utility workforce is projected to retire within the next 5 years But large uncertainties in emissions regulation

Impact of Renewables & Changing Costs, Demand & Regulations

Renewable energy predicted to become the world's largest source of electricity within 15 years Coal based power expected to contribute over 30% of the world's electricity through 2025 ¹ Variable fuel prices & quality affect operating margins Units designed for baseload now cycling continuously Growing pressure to reduce emissions affect operations

🖓 U.S. Energy Information Association (EIA), 2016

 \bigcirc

MAJOR FOSSIL-STEAM-FIRED BOILER DESIGNS

Pulverized Coal

- Wall-fired
- Tangentially Fired
- Turbo
- Circulating Fluidized Bed (CFB)
 - Pressurized
 - Atmospheric
 - Bubbling
- Stoker
- Integrated Gasified Coal Combined Cycle

OPPORTUNITIES FOR EFFICIENCY & EMISSIONS PERFORMANCE

- Boiler
 - Thermal performance monitoring
 - Boiler tuning
 - Combustion optimization
 - Boiler cleanliness optimization
- Air Quality Control Systems (AQCS)
 - SCR tuning
 - SCR/SNCR optimization
 - FGD optimization
 - Hg optimization
- Turbine
 - Thermal performance monitoring
 - Sliding pressure throttle control
- Balance of Plant
 - Cooling tower, condenser, outlet water temperature, etc.

COAL QUALITY IS IMPORTANT

- Heat content, sulfur, hardness, grind-ability and other chemical constituents have big implication.
- Major classifications based on heat content: in descending order:
 - Anthracite
 - Bituminous
 - Subbituminous
 - Lignite
 - Peat
- Powder River Basin (PRB) coal in US a major emissions compliance strategy
- Boilers burning off-design fuels have challenges and opportunities
- Large wave of conversions from coal to natural gas in early phase
- Outcome will be affected by both regulation and natural gas proces

BOILER OPTIMIZATION

• Applies AI optimization in a real-time closedloop application

 Integrates fuel / air and sootblowing management

✓ The same brain operates 24 X 7 X 365

✓ Integrates directly into plant control

 Provides analytics on premise and to remote users

 Deploys integrated optimization – MPC, neural networks, heuristics, first principals – to best address complex, real world problems in closed loop

400 MW UNIT FIRING PRB W/80% CAPACITY FACTOR

Benefit Type	Plant Y	
вененттуре	Unit 1	
Availability (W/Avoided MATS Lost Revenue)	\$811,286	
Fuel Savings	\$567,148	
NOx Reduction Value	\$26,254	
Avoided MATS Inspection/Tuning/Testing Costs	\$86,667	
Total Availability, Fuel, Nox & MATS Benefits	\$1,491,355	
Potential CO2 Benefits	\$357,500	
Total Potential Benefits	\$1,848,855	

TYPICAL COMBUSTIONOPT BENEFITS

- NOx reductions of 10-15%
- Boiler efficiency increase of 0.5-0.75%
- CO controlled to desired limit
- Better ramping and load-following performance
- Reduced opacity excursions
- Avoided tail-chasing behavior
- Better adherence to fan and mill amp limits
- Improved situational awareness and process insight

IMPACT ON OPERATIONS & PERFORMANCE

EXIT GAS TEMPERATURE IMPACT

Average Exit Gas Temp

Soot Blower Control System HMI

Ω

.... ...

TYPICAL GAS INLET TEMPS SOOTOPT OFF VS. ON

Proprietary and Confidential

SCR/SNCR SYSTEMS & OPTIMIZATION

- Reduce Reagent Usage
- Lengthen Maintenance Intervals
- Avoid Ammonia Slip
- Reduce risk of Ammonium Bisulfate & Sulfur Trioxide deposits
- Control "Blue-Plume" Opacity Excursions
- Tighter, condition-based gas temperature control
- Better Manage System Interactions

DCS SCREEN EXAMPLE

🗙 01533: 8

PRCLINK FUEL UNIT AIR/GAS STEAM WATER ELEC ASH/BGHSE MISC TRENDS TURBINE Utilities ULTRAMAX Operations Displays

FRIDAY

OCT 06,2000 10:42:21 U1 PROCESSLINK OVR & COMMON

4 6 8 12 16 17 21 24 25 27 28 30 65 99 S A

ProcessLink Status						
	MASTER	SEC AIR	OUTLET TEMP	BNR 1	BNR 2	BNR 3
PULV A	OFF	OFF	OFF	OFF	OFF	OFF
PULV B	OFF	OFF	OFF	OFF	OFF	OFF
PULV C	OFF	OFF	OFF	OFF	OFF	OFF
PULV D	OFF	OFF	OFF	OFF	OFF	OFF
PULV E	OFF	OFF	OFF	OFF	OFF	OFF
PULV F	OFF	OFF	OFF	OFF	OFF	OFF
PULV G	OFF	OFF	OFF	OFF	OFF	OFF

ProcessLink™							
M MASTE	MASTER ENABLE						
NOX	0.3#/MBTU						
CO	330 - 2 PPM						
OXYGEN	2.2%						
OPACITY	1.9%						
UNIT MW	226 - 6 MW						
THROT PRS	1873 - PSIG						
SH TEMP	1010.DEG F						
RH TEMP	1005.DEG F						
FUEL FLOW	94.8%						
AIR FLOW	94 - 4 %						
FURN PRS	-0.6IN H20						
EXIT TEMP	H 2122. DEG F						
 A second sec second second sec	H 8.6INWC						
BGHSE DP B	6.4INWC						

C2 SETPOINT BIAS	FD FANS BIAS	ID FANS BIAS
1 K-8 P-1 I I I I I I I I I I I I I I I I I I I	+10 PL 0.2% 0 ACT 0.6% 10 OP 0.6%	+10 PL 0.3% 0 RCT -0.0%
CON PV 2.16% SP 2.00%	AOUT 62.9% BOUT 63.9%	AOUT 77.5% BOUT 76.9%
SHF NEUCO1 CLR	PULV D PULV A PULV PULV E PULV	

🔀 Start 🛛 😨 Composer - [System Archit... 🛛 🌿 Exceed

🛃 Telnet - 10.51.3.33 🛛 🔀 OIS33: 8

🔜 📾 🛁 10:44 PM

lecycle Bin

_ 🗆 ×

Boiler and Back-end Process Causality Chain

21