

MACT Update

May 7, 2015

Martin Dillon Flue Gas Treatment Specialist Lhoist North America

How has industry been preparing for MACT success?

- Performance and Versatility
 - Improvements in DSI Technology and Process Tools
 - Demonstration and optimization
 - Sorbent injection, distribution and mixing tools coupled with tools such as CFD modeling, reaction models
 - Improved understanding/design around material handling; better system reliability, flue gas constituents (temp, other acids, moisture)
 - Improvements in Sorbents (calcium based)
 - Standard hydrates
 - "FGT grade" hydrates
 - Enhanced hydrates
 - Small particles
 - High surface area/pore volume
 - Sorbacal[®] SP/SPS

Why Consider Enhanced Sorbents?

- Performance
 - Higher removal performance
 - Less mass loading into the particulate control device
- Operational Cost Savings
 - Lower Sorbent Consumption
 - Capital Equipment
 - Fewer Deliveries
 - Less waste
- Different sorbents will likely behave differently, testing is important!

Lhoist Sorbent Information

Sorbent	Standard Hydrated Limes	FGT Grade Sorbacal [®] H	Sorbacal® SP	Sorbacal® SPS	
Figure					
Typical Available Ca(OH) ₂ [%]	92 – 95	93	93	93	
Typical Surface Area [m²/g]	14 – 18	> 20	~40	~40	
Typical Pore Volume [cm ³ /g]	~0.07	0.08	~0.20	~0.20	

DSI Trial Experience

Trial Equipment & Residue Analysis

Lhoist Experience

- Commercial Trial Library
 - \checkmark Example: SO₂ removal in baghouse applications
 - ✓ Wide range of process conditions, applications
 - ✓ Sorbacal[®] SP twice as active as Sorbacal H (FGT type)

Lime Dosage Rate (-)

Lhoist North America

Case Study Development- TRIALS!

- LNA has been active in more than 30 trials in the last 18 months
 - Utility & Industrial
 - ✓ BMACT, MATS, Permit
 - ✓ HCI, SO_3 , SO_2 , and HF
 - Trials important to confirm performance
 - Various injection configurations
 - Fuels
 - Sorbents
 - Changes in load/process
 - Site specific equipment needs

					LNA Scope			New or Existing
No.	Driver	Pollutant(s)	Sorbents	Application	Sorbent	FTIRs	DSI	LNA Customer
1	Consent	SO2	SP & SPS	Chemical Manufacture	Х			New
2	IB MACT	HCI	H & SP	Pulp & Paper	Х			New
3	IB MACT	HCI	H & SP	University	Х			New
4	IB MACT	HCI	Н	Industrial	Х			New
5	Existing	HCI	H & SP	EGU	Х	Х		Existing
6	MATS	HCI, SO2	SP	EGU	Х			New
7	Consent	HCI, SO2	SPS	EGU	Х			New
8	IB MACT	HCI	H & SP	Paper	Х	Х		Existing
9	Permit	SO2	SPS	Steel	Х		Х	New
10	Permit	SO2	SPS	Steel	Х		Х	New
11	Consent	SO2	SPS	Chemical Manufacture	Х			New
12	MATS	HCI & Hg	SPAC	EGU	Х	Х	Х	New
13	Existing	SO2	SP	EGU	Х	Х		Existing
14	Permit	HCI, HF, SO2	SPS	Tile	Х	Х	Х	Existing
15	NAAQS	SO2	SP & SPS	University	Х			New
16	MATS	SO3	SP	EGU	Х			Existing
17		SO2	SPS	Pilot	Х	Х		-
18	Consent	SO3	SP	EGU	Х			New
19	HISWI	HCI	SP	Medical Waste	Х			New
20	Permit	HCI, HF, SO2	SPS	Tile	Х	Х	Х	Existing
21	IB MACT	HCI	SP	Glass	Х			Existing
22	Permit	SO2	LKD, Std HL & SPS	Lime	Х	Х	Х	-
23	IB MACT	HCI	Std HL & SP	Biomass	Х	Х	Х	New
24	Consent	SO2	SPS	Cement	Х		Х	New
25	Consent	SO2	Н	Cement	Х		Х	New
26	Permit	SO2 & Hg	SPAC	Paper	Х		Х	Existing
27	Permit	HCI, HF, SO2	SPS	Tile	Х			New
28	Permit	HCI, HF, SO2	SPS	Brick	Х			New
29	Permit	HCI	SP	Paper	Х			New
30	Permit	SO2	H & SP	University	Х			Existing

DSI Case Studies

Case Study - Summary

- 1. Utility MATS multi-pollutant compliance for HCI and Hg using Sorbacal[®] SPAC
- 2. Conversion from sodium bicarbonate (SBC) to Sorbacal[®] SPS

Case Study - Utility Multi-Pollutant

- Application \rightarrow 60 MW Coal Fired Power Plant
- Goal → ~50% HCI & ~65% Hg Removal Efficiency
- Why \rightarrow Meet Hg + HCI MATS Limit
- Boiler \rightarrow Air Heater \rightarrow ESP \rightarrow DSI \rightarrow FF
- Process Conditions
 - ✓ Flue gas flow rate ~265,000 ACFM
 - ✓ Flue gas moisture ~11-12% by volume
 - ✓ Baseline concentrations ~2 ppmv HCI / 3-3.5 lb/TBtu Hg
 - ✓ Flue gas temperature at DSI location ~315 degrees F
- DSI \rightarrow One (1) Injection Lance @ DSI Location
- Sorbent \rightarrow Sorbacal[®] SP / BPAC Blended Sorbent
- Challenges → Simultaneous HCI + Hg Compliance with Single Sorbent

Case Study - Utility Multi-Pollutant

Case Study - Tile

- Plant used sodium bicarbonate (SBC) and Sorbacal® SP
- SBC used for SO₂ and HCI control but HF over permitted levels; 2nd system was installed to inject Sorbacal[®] SP for HF

System #1 Goal \rightarrow 90% HCl, 85% HF & 60% SO₂ Reduction System #2 Goal \rightarrow 95% HCl & 65% HF Reduction

- Residue could not pass TCLP (selenium and chromium)
 - classified as hazardous waste: \$550/ton to landfill
- Sorbacal[®] SPS able to achieve SO₂, HCI and HF limits and passed TCLP test; reduced landfill costs by \$480/ton
- Continue to work with customer to optimize Sorbacal[®]
 SPS performance for all acid gases
 - Humidification, mixing, injection lances

Case Study - Tile

- Kiln \rightarrow Heat Exchanger \rightarrow DSI \rightarrow FF
- Process Conditions
 - Flue gas flow rate ~25,000 ACFM (system #1) & ~16,000 ACFM (system #2)
 - ✓ Flue gas moisture ~10-11% by volume
 - Baseline concentrations ~50 ppmv HCI / ~25 ppmv SO₂ / ~25 ppmv HF
 - ✓ Flue gas temperature at DSI location 300-350 degrees F
- DSI \rightarrow One (1) Injection Port @ DSI Location
- Sorbent \rightarrow Sorbacal[®] SPS
- Challenges \rightarrow Simultaneous Multi-Acid Gas Control

Case Study - Tile

Summary

- DSI is mature and viable control technology
- Sorbent properties are important
 ✓ Standard limes vs. Enhanced hydrated limes
- Calcium DSI sorbents are capable at achieving high removals for a variety of pollutants
 SO₃, HCI, and HF
 SO₂

- Case studies and prior trial experience help
 predict performance and compliance options
 - \checkmark Testing is the most reliable way to verify.

Contact Information

Please feel free to contact me at:

Martin Dillon, P.E. Lhoist North America Flue Gas Treatment (FGT) Specialist <u>Marty.Dillon@Lhoist.com</u>

