

Selenium Reduction

Caroline Dale

WATER TECHNOLOGIES

Contents

Biological Selenium Reduction The MBBR technology Operating Experience SeleniumZero Conclusions

WATER TECHNOLOGIES

2

Selenium Cycle

Selenium is present in coal , hence FGD effluent

- Selenium mainly present as :
 - $_{\circ}$ Selenate (SeO₄²⁻) can be as high as 10 mg/l
 - \circ Selenite (SeO₃²⁻)
 - but also SeCN
 - Organic complex?

Biological Reduction of Selenium : Quick Review

Selenate and selenite reduction

under anoxic conditions

under anoxic conditions

Redox

- 1 Organic Carbon Oxidation
- 2 Polyphosphate Development
- 3 Nitrification
- 4 Denitrification
- 5- Polyphosphate Breakdown
- 6 Selenium Reduction
- 7 Sulfide Formation
- 8 Acid Formation
- 9 Methane Formation

- Redox potential for denitrification and selenium reduction have small overlap
- Both reactions can occur in the same reactor

Selenium reducers may be outcompeted by denitrifiers

 depending on influent characteristics, 2 stage reactor systems may be required

Providing the right environment....

- Energy gained from respiration of Se compounds is approx ½ of what can be gained from using dissolved oxygen
 - Selenium reducers have lower growth rates than other heterotrophs
- Fixed film processes for Se reduction have been the most successful

The MBBR process

WATER TECHNOLOGIES

The MBBR process (Moving Bed Biofilm Reactor)

- The process is based on the biofilm principle. The core of the process is the biofilm carrier elements made from polyethylene with a density slightly below that of water.
- The carriers are designed to provide a large protected surface for bacteria development (800 m²/m³)

Advantages of MBBR process

✓ Can operate with the same support material for over 20 years

- ✓ No backwashing requirements
- \checkmark No issue with gas build up (N₂ or CO₂)
- ✓ Can tolerate high TSS concentrations in the feed
- ✓ Can tolerate large hydraulic variations

MBBR for denitrification > 20 years of experience

The carriers are kept in suspension and continuous movement in the water by mechanical mixers

Key Elements

Biomedia

Sieve

Mixers

Full scale MBBR

Solids separation step

Small Se-particles formed during biological reduction: Precipitates 50-60 nm = 0.05-0.06 μm

Williams Et Al. Env. Microbiological Reports, 2013

As long as these are stuck to the biomass/biofilm they can be separated from the effluent.

Hageman et Al, Proceedings of EMC, 2011

Solids Separation Step

- Solids removal post MBBR
 - Actiflo
 - Multimedia filters
 - UF

Process configuration

Operating experience treating FGD effluent

WATER TECHNOLOGIES

Selenium Removal Trials

- Bench scale reactors have been operating at AnoxKaldnes for about 1 year
 - Effluent from a Danish FGD effluent
 - Effluent from a US FGD effluent

Reactors are :

- Continuous flow
- Temperature controlled
- Nutrient & external carbon dosing
- Redox monitoring

3 reactors in series

Selenium Analyses

Performance followed by measurements of total Selenium and selenium speciation (Se (VI) and Se(IV)) on

- Filtered effluent (0.2 um)
- Chemically treated effluent (no filtration)

Coagulation and flocculation using FeCl₃ and polymer

Methods

- Total selenium using ICP-MS/AES
- Selenium speciation of selenite (Se⁴⁺) and selenate (Se⁶⁺) done occasionally using HPLC-ICP/MS
- Characteristics of studied wastewaters:

Parameter	FGD	FGD
	Effluent 1	Effluent 2
Selenate (µg/l)	311*	129
Selenite (µg/l)	<10	57
Total Selenium (μg/l)	340	197
SCOD (mg/l)	142	80
NO ₃ -N (mg/l)	80	35
NO ₂ -N (mg/l)	0.7	2.4
Sulphate (mg/l)	4000	8500
Chloride (mg/l)	4000	1600
PO ₄ -P (mg/l)	0.1	0.03
NH ₄ -N (mg/l)	3.3	0.8

*Batch 3 of this effluent contained 4100 μg/l

Selenium Removal and SeleniumZero®

WATER TECHNOLOGIES

2!

Selenite Treatment Technologies

• Easy to remove Selenite, Se(IV)

• Se (IV) removal to ppb level

- Iron co-precipitation and adsorption followed by solid/liquid separation (ACTIFLO®/MULTIFLO™)
- Fixed-bed adsorption onto iron oxide media
- MetClean[™] Technology
- Activated alumina
- Membrane (RO)

Selenate Treatment Technologies

Selenium (VI) removal to ppb level

- Much more difficult than Se (IV)
- Adsorption onto iron oxide: not efficient
- Severe impact of pH and sulfate
- Ion Exchange: reliable process [High Selectivity for Se (VI)]
 - > $\alpha Se_{(VI)} = 17; \alpha SO_4 = 9.1; \alpha Se_{(IV)} = 1.3$
 - Regenerant handling is the key issue
 - High sulfate concentrations are a concern with IX
- SeleniumZero®

Selenate Removal

- Reduction of Se(VI) to Se(IV)
- Reaction:
 - Se (VI) reduced to Se (IV); Fe(II) is oxidized to Fe (III) and forms Hydrous Ferric Oxide (HFO)
 - Se (IV) is adsorbed onto HFO at pH 6.5 7.5
- Reducing Agents:
 - ZVI (Fe⁰), Fe²⁺, metabisulfite etc
 - Kinetics is very slow without catalyst
 - Kinetics is pH dependent
 - ZVI best at lower pH +/- 4.5

SeleniumZero® - New Technology for Selenate Removal

- Se(VI) removal with chemically treated iron based adsorption media
- Conducted 6 months of lab studies with actual wastewater from a coal plant
- Sample contained about 20 ppb of Se (VI) with sulfate, some TSS, and other cations and anions
- Sample was filtered prior to adsorption column

SeleniumZero®: Operating Conditions

- Column operated in up-flow mode
- Contact time: 5 min
- Influent Se(VI): 100 ppb (sample spiked)
- Breakthrough Se(VI): <5ppb
- Column operated 24x7 for 6 months

SeleniumZero: Results & Observations

- \circ No significant Δ P across the column
- No impact of Ca²⁺ and SO₄²⁻ on Se (VI) removal capacity
- opH increased only 0.5 unit
- Spent media passed TCLP test (Se in TCLP extract: <0.1 mg/L which is below the TCLP limit of 1 mg/L)
- Some iron leaching was observed from the column

- Final effluent Se concentration (economically) achievable using MBBR is highly dependent on the influent Se concentration
- FGD effluents have complex / variable matrices adaptation of the biomass does take time however biological treatment using MBBR is a viable treatment solution – potential for combining with SeleniumZero
- Carbon dosing control required to minimize sulfate reduction
- Solids separation step is critical for capture of small Se particles
- On-going testing of MBBR for different operating conditions and effluents

Thank you

WATER TECHNOLOGIES