Presentation Overview

- EGU MATS Compliance – *enough time*?
- Use of electronic HgCEM Systems for tuning Hg Abatement “Process”, on-line monitoring and optimization, and compliance monitoring
- NIST Traceability – current state of affairs
- Proposed EPA limits for RATA – and more reasonable RATA tolerances.
- Example data.
- Conclusions
2011 Federal Register Notices – Mercury and Air Toxics and New Source Performance Standards

- Electric utility (MATS) and boilers and incinerators NSPS
- Pollutants
 - NSPS - SO2, NOx, PM filter
 - MATS – HCl, HF, and Hg
 - Alternative limits – PM, non-Hg HAP metals, SO2
- Testing and monitoring appendices
 - Hg CEMS and sorbent trap CMS
 - HCl and HF CEMS
- 211 pages
 - FR notice - 3 column Table of Contents
 - MATS rule – 2 column Table of Contents
U.S. EPA EGU MATS and Cement MACT
Summary – [Hg] must be really low ~ 1.5 ug/m3 for EGUs

- EPA Electric Generating Unit Mercury and Air Toxic Standards (MATS) promulgated January 2012
- Targeted MATS Pollutants and limits

- The EPA Portland Cement MACT
- Targeted MACT Pollutants and limits

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Existing Source Std.</th>
<th>New Source Std.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>1.2 lbs/T BTU</td>
<td>0.35 lbs/T BTU</td>
</tr>
<tr>
<td>PM</td>
<td>0.03 lbs/M-BTU</td>
<td></td>
</tr>
<tr>
<td>HCl</td>
<td>0.002 lbs/M BTU</td>
<td></td>
</tr>
<tr>
<td>THC</td>
<td>24 ppmvd</td>
<td>24 ppmvd</td>
</tr>
<tr>
<td>PM</td>
<td>0.07 lbs/ton clinker</td>
<td>0.02 lbs/ton clinker</td>
</tr>
<tr>
<td>HCl</td>
<td>3 ppmvd</td>
<td>3 ppmvd</td>
</tr>
<tr>
<td>Organic HAP (Alternative to THC)</td>
<td>12 ppmvd</td>
<td>12 ppmvd</td>
</tr>
</tbody>
</table>

Deadline for Compliance – April, 2015

Deadline for Compliance – September, 2015
Impact of Regulations

1. New Air Pollution Control Strategies
2. New or Improved Monitoring Technologies
3. Proof of Performance of 1 & 2
4. Compliance Monitoring and Reporting
5. Control Systems Performance Monitoring and Optimization
6. Plant Retirements

We are still in the learning process – and compliance deadlines on upon us!
All your measurements will be down here!
Economics of Hg Removal - 500 MWe Plant

Accurate Measurement and Traceability are Critical

Reduction in Hg emissions from 80 – 90% using ACI costs an additional $500K! (reduction from 1.0 to 0.6 µg/m³)
Accurately Measuring pptv - Levels of Mercury in Flue Gas

- 1 µg/m³ Hg = 112 parts per trillion (v/v)
- Many potential interferences and losses.
- Tekran R&D spent 1998 to 2003 understanding flue gas mercury reactions in the laboratory – and we’re still learning
- Mercury appears in different species
 - Elemental - Hg⁰
 - Ionic - Hg²⁺
 - Particulate-bound - Hgₚ
- Detectors can only measure Hg⁰
Oxidized mercury conversion and interference prevention: The Tekran approach (pat’d)

- Task: quantitatively convert all Hg$^{2+}$ to Hg0 with no back reactions in the presence of high concentration redox compounds and reactive surfaces
- Proprietary thermal converter material set at 700C
- DI water mist injected into tail of thermal converter to “fix” Hg0 from potential back reactions and eliminate interferences
- Gas is rapidly chilled, water condenses carrying away reactive compounds, and Hg0 in a clean gas matrix goes to the analyzer

www.tekran.com
New 3300xi HgCEMS
Same trusted components with improved physical design

3300 HgCEM

3300Xi HgCEM

2537Xi+ Analyzer
System controller

3310Xi
Hg0 Calibrator

3321
- Conditioner
- Controller
- Oxidizer Option

* wall mounted *
Tekran New Generation HgCEM System
3321 Sample Conditioner and Control Unit

Converter
Conditioner
Components

- HgCl₂ Generator
 - Oxidizer Type
 - Optional

- Modular Power Panel
- Modular Umbilical Heaters
- Probe Control Hardware
- Modular Electronics

Wall-mounted - cabinet closed
Tekran 3300Xi Dual Port Sampling

Applications:

- Mercury control technology
 - Research and development
 - Acceptance testing at new installations
 - Optimization and performance monitoring

- Regulatory monitoring of multiple, close-proximity emissions stacks.

www.tekran.com
EERC Study Low-Level Measurements (funded by EPRI, ICCI, CATM)
NIST Traceability Protocol

- Elemental Hg generators used vs. Hg cylinder gas.
- NIST Traceability involves unbroken chain of calibrators – and ongoing adherence to U.S. EPA traceability protocol.
- EGU’s typically 0 - 10 µg/m³
- Portland Cement - two levels
 - Mill On – e.g. (0-30 µg/m³)
 - Mill Off – e.g. (0 – 300 µg/m³)
- Corrections Required in Emissions if Calibration Fails
NIST Traceability Protocol for Hg Generators
Unbroken Chain of Comparisons

Slide courtesy of Jeff Ryan, U.S. EPA Clean Air Markets
NIST Hg Generator Calibration Levels
(as received from NIST Dec. 2013)

<table>
<thead>
<tr>
<th>Low-Level (µg/m³)</th>
<th>High-Level (µg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical Levels of Interest for EGU MATS and many Mill-On PC MACT Conditions</td>
<td></td>
</tr>
<tr>
<td>0.200</td>
<td>41.00</td>
</tr>
<tr>
<td>0.501</td>
<td>85.00</td>
</tr>
<tr>
<td>1.100</td>
<td>140.10</td>
</tr>
<tr>
<td>1.313</td>
<td>148.12</td>
</tr>
<tr>
<td>1.925</td>
<td>186.77</td>
</tr>
<tr>
<td>2.740</td>
<td>233.99</td>
</tr>
<tr>
<td>4.774</td>
<td>291.78</td>
</tr>
<tr>
<td>5.701</td>
<td></td>
</tr>
<tr>
<td>8.098</td>
<td></td>
</tr>
<tr>
<td>9.499</td>
<td></td>
</tr>
<tr>
<td>11.033</td>
<td></td>
</tr>
<tr>
<td>17.102</td>
<td></td>
</tr>
<tr>
<td>19.000</td>
<td></td>
</tr>
<tr>
<td>23.003</td>
<td></td>
</tr>
<tr>
<td>28.006</td>
<td></td>
</tr>
<tr>
<td>38.890</td>
<td></td>
</tr>
</tbody>
</table>

Likely levels for Portland Cement Mill-Down Conditions
Method 30B

- This method is only intended for use only under relatively low particulate conditions (e.g., sampling after all pollution control devices).

- This method is designed to measure the mass concentration of total vapor phase Hg in flue gas, including elemental Hg (Hg\(^0\)) and oxidized forms of Hg (Hg\(^{2+}\)), in micrograms per dry standard cubic meters (µg/dscm).

- Sorbent Traps have:
 - mineral wool section (intended for PM),
 - primary capture section,
 - secondary (breakthrough) capture section
 - final mineral wool section

- Hg\(^{P}\) that is captured in the trap is included in the analysis.
Why do plants use Activated Carbon Injection, Bromine, etc.?

ACI captures Hg0, Bromine helps oxidize Hg making it easier to capture on PM or in a scrubber. - Which increases the Hg content of the particulate!
The Electronic HgCEMS vs. Sorbent Trap

<table>
<thead>
<tr>
<th>Feature</th>
<th>Electronic HgCEMS</th>
<th>Sorbent Trap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital Cost (including installation)</td>
<td>2+ times higher than Sorbent Trap</td>
<td>$75-$100K</td>
</tr>
<tr>
<td>Operations and Maintenance Costs (see next slide)</td>
<td>Lower than Sorbent Trap</td>
<td>- Requires routine retrieval and analyses of traps</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Traps are consumables</td>
</tr>
<tr>
<td>Training and Complexity</td>
<td>Higher Level Training – more complex</td>
<td>- Comparatively simple to operate</td>
</tr>
<tr>
<td>Real-time feedback for Process and APCD</td>
<td>Valuable for “real-time” assessments and process feedback and control</td>
<td>- No capability for real-time feedback - data only available after days of exposure and analytical processing delays</td>
</tr>
</tbody>
</table>
The Electronic HgCEMS vs. Sorbent Trap Total Cost of Ownership

HgCEMS v. Appendix K Ownership Costs

Cumulative Cost of Ownership

- $800,000
- $600,000
- $400,000
- $200,000
- $0

Year of Operation of HgCEMS

0 1 2 3 4 5 6

HgCEMS
Vavg

www.tekran.com
- The 30B mercury coming from field blank, trap blank and particulate are always positive and must always be included in the 30B Total Hg.

- For the HgCEM, mercury scrubbing by the flyash on the filter may cause a negative bias.

- Dual 30B trap difference and analytical for both can cause positive or negative bias.

- Worst case is 0.38 ug/m³ difference between methods that pass all QA criteria.
EPA Allegheny Armstrong Plant
Comparison of Sorbent Trap Results

Figure E-5: Sorbent Trap Bias Error With Respect To OHM
Comparative 30B and Electronic HgCEM System Measurements

30B vs. 3300 HgCEMS RATA Results

Test Number | Total Hg (µg/m³) | Percentage Difference 30B-HgCEM
1-15 | 0.00-2.00 | 0%-100%

www.tekran.com
- The 30B mercury coming from field blank, trap blank and particulate are always positive and must always be included in the 30B Total Hg.

- For the HgCEM, mercury scrubbing by the fly ash on the filter may cause a negative bias.

- Dual 30B trap difference and analytical for both can cause positive or negative bias.

- Worst case is 0.38 ug/m³ difference between methods that pass all QA criteria.
If Hg Concentrations > 50% of Emission Limit (i.e. > ~0.75 µg/m³) HgCEMS within **20%** of Method 30B

If Hg Concentrations < 50% of Emission Limit (i.e. <~0.75 µg/m³) HgCEMS within **10%** of Emissions Limit (i.e. 0.15 µg/m³)

Opinions –
- above tolerances -not practical or based on current empirical information.
- Run off of “Top Ten” RATA testers on same stack would be insightful
RATA “Do-Over” Dollars

RATA Rerun Expenses

- "Post Mortem" Communications: $7,500.00
- Planning of Re-Test: $10,000.00
- HgCEMS Tune Up: $10,000.00
- Plant Dispatch Impact: $20,000.00
- RATA Rerun: $15,000.00
- RATA Report Review: $7,500.00

Total Estimated Expense = $70,000
Where Are We Now in the U.S.?

- New parameters to be measured including PM, Hg, HCl, THC
- Low-level measurements and Reference-Methods challenges and potential disconnects
- EPA Published Updates of EGU MATS 17-Feb-2015 – Federal Register – out for review.
- We’re all still learning.
- Compliance deadlines in April 2015!