EGU MATS Compliance – HgCEM Systems Challenges and Opportunities.

Prepared for McIlvaine Company Mercury Measurement and Capture Webinar 05-March-2015

by
Karl R. Wilber, PE
Tekran Instruments Corporation
230 Tech Center Drive
Knoxville, TN 37912
kwilber@tekran.com

Presentation Overview

- EGU MATS Compliance enough time?
- Use of electronic HgCEM Systems for tuning Hg Abatement "Process", on-line monitoring and optimization, and compliance monitoring
- NIST Traceability current state of affairs
- Proposed EPA limits for RATA and more reasonable RATA tolerances.
- Example data.
- Conclusions

2011 Federal Register Notices – Mercury and Air Toxics and New Source Performance Standards

- Electric utility (MATS) and boilers and incinerators NSPS
- Pollutants
 - o NSPS SO2, NOx, PM filter
 - o MATS HCI, HF, and Hg
 - Alternative limits PM, non-Hg HAP metals, SO2
- Testing and monitoring appendices
 - Hg CEMS and sorbent trap CMS
 - HCl and HF CEMS
- 211 pages
 - FR notice 3 column
 Table of Contents
 - MATS rule 2 column
 Table of Contents

U.S. EPA EGU MATS and Cement MACT

Summary – [Hg] must be really low ~ 1.5 ug/m³ for EGUs

- EPA Electric Generating Unit Mercury and Air Toxic Standards (MATS) promulgated January 2012
- Targeted MATS Pollutants and limits

Pollutant	Existing Source Std.	New Source Std.
Mercury	1.2 lbs/T-BTU	0.35 lbs/T-BTU
PM	0.03 lbs/M-BTU	
HCI	0.002 lbs/M-BTU	

Deadline for Compliance – April, 2015

- The EPA Portland Cement MACT
- Targeted MACT Pollutants and limits

Pollutant	Existing Source Std.	New Source Std
Mercury	55 lbs/MM tons clinker	21 lbs/MM tons clinker
THC	24 ppmvd	24 ppmvd
PM	0,07 lbs/ton clinker	0.02 lbs/ton clinker
HCI	3 ppmvd	3 ppmvd
Organic HAP (Alternative to THC)	12 ppmvd	12 ppmvd

Deadline for Compliance – September, 2015

Impact of Regulations

- 1. New Air Pollution Control Strategies
- 2. New or Improved Monitoring Technologies
- 3. Proof of Performance of 1 & 2
- 4. Compliance Monitoring and Reporting
- 5. Control Systems Performance Monitoring and Optimization
- Plant Retirements

We are still in the learning process – and compliance deadlines on upon us!

Economics of Hg Removal - 500 MWe Plant

Accurate Measurement and Traceability are Critical

Reduction in Hg emissions from 80 – 90% using ACI costs an additional \$500K! (reduction from 1.0 to 0.6 µg/m³)

Accurately Measuring pptv - Levels of Mercury in Flue Gas

- 1 μg/m³ Hg = 112 parts per trillion (v/v)
- Many potential interferences and losses.
- Tekran R&D spent 1998 to 2003 understanding flue gas mercury reactions in the laboratory – and we're still learning
- Mercury appears in different species
 - Elemental Hg⁰
 - o Ionic Hg²⁺
 - Particulate-bound Hg^P
- Detectors can only measure Hg⁰

Oxidized mercury conversion and interference prevention: The Tekran approach (pat'd)

- Task: quantitatively convert all Hg²⁺ to Hg⁰ with no back reactions in the presence of high concentration redox compounds and reactive surfaces
- Proprietary thermal converter material set at 700C
- DI water mist injected into tail of thermal converter to "fix" Hg⁰ from potential back reactions and eliminate interferences
- Gas is rapidly chilled, water condenses carrying away reactive compounds, and Hg⁰ in a clean gas matrix goes to the analyzer

New 3300xi HgCEMS

Same trusted components with improved physical design

Tekran New Generation HgCEM System

3321 Sample Conditioner and Control Unit

Converter Conditioner Components

HgCl₂ Generator

Optional

Oxidizer Type

TEKRAN T INTE

- Modular Power Panel
- Modular Umbilical Heaters
- **Probe Control Hardware**
- Modular Electronics

Wall-mounted - cabinet closed

Tekran 3300Xi Dual Port Sampling

Applications:

- Mercury control technology
 - Research and development
 - Acceptance testing at new installations
 - Optimization and performance monitoring
- Regulatory monitoring of multiple, closeproximity emissions stacks.

EERC Study Low-Level Measurements (funded by EPRI, ICCI, CATM)

NIST Traceability Protocol

- Elemental Hg generators used vs. Hg cylinder gas.
- NIST Traceability involves unbroken chain of calibrators

 and ongoing adherence to U.S. EPA traceability
 protocol.
- EGU's typically 0 10 μg/m³
- Portland Cement two levels
 - Mill On e.g. (0-30 μg/m³)
 - \circ Mill Off e.g. (0 300 µg/m³)
- Corrections Required in Emissions if Calibration Fails

NIST Traceability Protocol for Hg Generators Unbroken Chain of Comparisons¹

¹Slide courtesy of Jeff Ryan, U.S. EPA Clean Air Markets

NIST Hg Generator Calibration Levels (as received from NIST Dec. 2013)

	National Institute of Standards and Technology (NIST)							
	Mercury Generator Calibration Points							
		Low-Leve	ı	High-Leve	el			
		(µg/m3)		(µg/m3)				
Typical		0.200		41.00	٦			
Levels o	f	0.501		85.00				
Interest	for	1.100		140.10		ely levels for		
EGU MA	TS -	1.313		148.12	_	rtland Cement		
and mar	ıy	1.925		186.77		- Down		
Mill-On F	PC	2.740		233.99	Co	nditions		
MACT		4.774		291.78				
Conditio	ns 🗀	5.701						
		8.098						
		9.499						
		11.033						
		17.102						
		19.000						
		23.003						
		28.006						
		38.890						

Method 30B

- This method is only intended for use only under relatively low particulate conditions (e.g., sampling after all pollution control devices)
- This method is designed to measure the mass concentration of total vapor phase Hg in flue gas, including elemental Hg (Hg⁰) and oxidized forms of Hg (Hg²⁺), in micrograms per dry standard cubic meters (µg/dscm)
- Sorbent Traps have:
 - mineral wool section (intended for PM),
 - o primary capture section,
 - secondary (breakthrough) capture section
 - o final mineral wool section
- Hg^P that is captured in the trap is included in the analysis

Andover Technology Partners

Why do plants use Activated Carbon Injection, Bromine, etc.?

ACI captures Hg⁰, Bromine helps oxidize Hg making it easier to capture on PM or in a scrubber.

- Which increases the Hg content of the particulate!

The Electronic HgCEMS vs. Sorbent Trap

Feature	Electronic HgCEMS	Sorbent Trap		
Capital Cost (including installation)	2+ times higher than Sorbent Trap	\$75-\$100K		
Operations and Maintenance Costs (see next slide)	Lower than Sorbent Trap	-Requires routine retrieval and analyses of traps - Traps are consumables		
Training and Complexity	Higher Level Training – more complex	-Comparatively simple to operate		
Real-time feedback for Process and APCD	Valuable for "real-time" assessments and process feedback and control	- No capability for real-time feedback - data only available after days of exposure and analytical processing delays		

The Electronic HgCEMS vs. Sorbent Trap Total Cost of Ownership

- The 30B mercury coming from field blank, trap blank and particulate are always positive and must always be included in the 30B Total Hg.
- For the HgCEM, mercury scrubbing by the flyash on the filter may cause a negative bias.
- Dual 30B trap difference and analytical for both can cause positive or negative bias.
- Worst case is 0.38 ug/m³ difference between methods that pass all QA criteria.

EPA Allegheny Armstrong Plant Comparison of Sorbent Trap Results

Comparative 30B and Electronic HgCEM System Measurements

- The 30B mercury coming from field blank, trap blank and particulate are always positive and must always be included in the 30B Total Hg.
- For the HgCEM, mercury scrubbing by the fly ash on the filter may cause a negative bias.
- Dual 30B trap difference and analytical for both can cause positive or negative bias.
- Worst case is 0.38 ug/m³ difference between methods that pass all QA criteria.

EPA PROPOSED RATA TOLERANCE UPDATES 17-February-2015

- If Hg Concentrations > 50% of Emission Limit (i.e.> ~0.75 μg/m³) HgCEMS within 20% of Method 30B
- If Hg Concentrations < 50% of Emission Limit (i.e. <~0.75 μg/m³) HgCEMS within 10% of Emissions Limit (i.e. 0.15 μg/m³)</p>

Opinions –

- above tolerances -not practical or based on current empirical information.
- Run off of "Top Ten" RATA testers on same stack would be insightful

RATA "Do-Over" Dollars

Where Are We Now in the U.S.?

- New parameters to be measured including PM, Hg, HCI, THC
- Low-level measurements and Reference-Methods challenges and potential disconnects
- EPA Published Updates of EGU MATS 17-Feb-2015 Federal Register – out for review.
- We're all still learning.
- Compliance deadlines in April 2015!

