Bundling Technologies for Cost-effective NO_x Control

Blake Stapper, AECOM

March 26, 2015

Changing NO_x Control Market

- New limits may involve installation of advanced combustion controls and/or SNCR, but
- Some units being forced as low as $0.05 \text{ lb/MMBtu NO}_x$, often leaving choice between SCR and retirement
- SCR is less desirable because marketplace has changed
 - Lower baseline NO_x and lower capacity factors make SCR less cost-effective
 - Large capital investments are no longer desirable due to market uncertainties
- Life extension need of existing fleet requires costeffective alternatives to SCR

Non-SCR NO_x Reduction Strategy

- Minimize baseline emissions by applying advanced combustion controls, as ROFA® and Rotamix® at Fiddler's Ferry
- Implement LoTOx™ (lowtemperature ozone injection) to achieve cost-effective "SCR-like" NO_x emissions

Unit Description

- SSE's Fiddlers Ferry Unit 2 in UK
- 500 MWe supercritical unit
- Twin tangential furnace
- Equipped with CCOFA and SOFA
- Burning blends of Columbian, Russian, and U.S. coal
- Baseline Avg. NOx: 0.44 lb/mmBtu

Operating Conditions and Fuel Analysis

	Unit	Value
System Firing Rate (based on NCV)	[MW _{th}]	1245
System Load	[MW _e gross]	511
System Excess Air	[%]	14.4
System Excess O ₂	[% dry]	2.70
System Excess O ₂	[% wet]	2.45
System Fuel Flow	[kg/s]	50.0
System Air Flow	[kg/s]	497.8
	Unit	Value
Moisture	[%wt]	12.30
Ash	[%wt]	9.05
Volatile Matter	[%wt]	31.05
Fixed Carbon	[%wt]	47.60
Carbon	[%wt]	66.25
Hydrogen	[%wt]	4.07
Oxygen	[%wt]	5.95
Nitrogen	[%wt]	1.43
Sulphur	[%wt]	0.95
Chlorine	[%wt]	0.02
GCV	[kJ/kg]	26068
NCV	[kJ/kg]	24898

Integrated NOx Reduction System

- Rotating Opposed Fire Air (ROFA)
 - Two ROFA fans
 - 12 ROFA boxes
 - Modulated dampers
 - Ductwork
- Rotamix SNCR
 - Rotamix fan
 - Rotamix boxes
 - Urea solution handling and dilution
 - Injection lances and devices
- Burner modifications
- Keep existing SOFA/CCOFA

17-Days Trial Test Results

- NOx reduced from around 0.44 lb/mmBtu to below 0.16 lb/mmBtu.
 Averaged NOx after modifications is 0.153 lb/mmBtu.
- CO reduced from up to 1000 ppm to below 400 ppm.

LoTOx® NO_x Control Technology

- Low-temperature oxidation
- Offered by Linde Group
- NO_x scrubbing
- Widely used in refining industry with ~30 FCCU installations
- 25 MW coal-fired institutional boiler installation
- EPRI pilot demonstration at Coal Creek
- 90% NO_x removal

Reaction Kinetics

- NO_x scrubbing
 - Inject ozone downstream of air heater
 - Convert insoluble NO_x to highly-soluble N₂O₅
 - Requires ½ second residence time at 300°F
 - Capture in scrubber
- No SO₂ oxidation to SO₃

Reaction	Rate constants @ 25°C
$NO + O_3 \rightarrow NO_2 + O_2$	62,500
$2 NO_2 + O_3 \rightarrow N_2O_5 + O_2$	125
$CO + O_3 \rightarrow CO_2 + O_2$	1
$SO_2 + O_3 \rightarrow SO_3 + O_2$	5

Performance and Operational Advantages

- NO_x Performance
 - Capable of 90% removal
 - Select % removal by treating fraction of gas flow
- Multi-pollutant control
 - 50-70% Hg oxidation
 - Offset CaBr₂ addition rate
- Ozone supply flexibility
- Advantage over SCR
 - No MOT constraints
 - No AH fouling
 - No catalyst deactivation

Utility Boiler Applications - What's Changed?

- Lower NO_x baselines
- Smaller units
- Reduced capacity factors
- Improved utilization of oxygen in ozone production
- More flexible ozone delivery options
- Effluent regulations driving more plants to ZLD
- FCCU long-term operation

'Over the Fence' Ozone Supply Cost Model

Summary and Conclusions

- Non-SCR boilers are being pushed to further reduce NO_x emissions
- ROFA and Rotamix are cost-effective, but cannot achieve SCR-like emissions reductions
- LoTOx is best-suited to applications with low baseline NO_x emissions
- The combination of ROFA and LoTOx provides a cost-effective alternative to SCR, with fewer operational constraints