

power generation group

MERCURY RE-EMISSION RE-EXAMINED – A THERMODYNAMIC MODEL TO FOLLOW

McIlvaine Hot Topic Hour – Webinar February 26, 2015

> STEVE FEENEY Hg & WWT PRODUCT LINE MANAGER

ACHIEVING Hg MATS SUCCESS B&W's ABSORPTION PLUS™

Step 1: Provide sufficient up-front Hg oxidation.

Step 2:

Add sulfide to precipitate the Hg from the aqueous phase.

ELEMENTAL Hg <u>IS</u> SOLUBLE

Hg⁰ RE-EMISSION

 $Hg^{0}_{\text{LIOUID}} \leftrightarrow Hg^{0}_{\text{AQUFOUS}}$

MORE THAN A DOZEN RESEARCHERS HAVE MEASURED Hg⁰ SOLUBILITY SINCE 1930.

Hg⁰ ABSORPTION

 $Hg^{0}_{LIQUID} \leftrightarrow Hg^{0}_{AQUEOUS}$

Hg⁰ solubility = ~120 ppb @55C

Hg in stack flue gas = ~ 1 ppb

MERCURY CONTROL RIDES ON THE Hg MASS BALANCE

ELEMENTAL Hg <u>IS</u> SOLUBLE

Hg⁰ RE-EMISSION

MORE THAN A DOZEN RESEARCHERS HAVE MEASURED Hg⁰ SOLUBILITY SINCE 1930.

Hg⁰ solubility = ~120 ppb @55C

Hg in stack flue gas :

 $Hg^{0}_{LIQUID} \leftrightarrow Hg^{0}_{AQUEOUS}$

Hg in stack flue gas = ~ 1 ppb

MERCURY CONTROL RIDES ON THE Hg MASS BALANCE

B&W APPROACH IS PREFERRED – WHY?

B&W APPROACH

Up-front Hg oxidation Inorganic aqueous sulfide (3) LOWEST COST Most effective, except H₂S MOST EFFICIENT Safe delivery of sulfide

NO RESIDUAL ORGANICS

WIDELY AVAILABLE

B&W APPROACH IS PREFERRED – WHY

PATENTED

Inorganic aqueous sulfide (3) LOWEST COST Most effective, except H₂S

MOST EFFICIENT

Safe delivery of sulfide NO RESIDUAL ORGANICS

WIDELY AVAILABLE

CHEMICAL SAFETY

NFPA 704 DESIGNATION

- 0-4
- 0 Minimal
- 1 Slight
- 2 Moderate
- 3 Serious
- 4 Extreme

Blue – Health Red – Flammability Yellow - Reactivity NaHS – 3, 2, 1 Hydrogen - 0, 4, 0 NaOH – 3, 0, 2 SO₂ – 3, 0, 0 Anhyd. Ammonia – 3, 1, 0

Many Power Plant Chemicals carry a certain level of risk. That risk can be safely managed with proper training and the wearing of appropriate PPE.

Recent Mag-lime WFGD Testing

Recent Mag-lime WFGD Testing

babcock & wilcox power generation group

LSFO

ESTIMATED COSTS

First Tier Sulfides H_2S NaHS – H_2S + NaOH (1st neut) Na₂S – sodium sulfide

Second Tier Sulfides

Polysulfides made from CS₂ + NaHS, ie., Na₂CS₃

Third Tier Dithiocarbamates DEA+CS₂+NaHS Trimers (ie TMT-15) Poor synthesis/conversion of the Polysulfide

NaHS Maintenance Dosages Generally 0.02 gph/MW

500MW Unit ~ \$350K/year NaHS at 80% C.F.

Increasing cost

Understanding WFGD Hg Absorption

If you would like your WFGD Hg re-emission reexamined, and feel the concepts presented in this presentation may benefit you, we would welcome the chance to help you achieve Hg MATS success.

Steve Feeney 6147169952.