Re-Engineering Coal-Fired Electric Generating Plants with Coal Gasification

By

CastleLight Energy Corp. Keith Moore – President

Visit: www.Castle-Light.com

DISCLAMER

Information herein is best estimates of the presenters and subject to change. No guarantees or warrantees implied or given.

CastleLight Energy Corp.

- Technology evolved from coal combustion research at Rockwell International with further development by TransAlta Utilities.
- **Hybrid of Coal Gasification** with strong SO₂ and NO_x emissions control
- Coupled with a fast Coal Beneficiation process
- Some \$60 million in Utility peer reviewed development and field demonstrations & commercial programs
- Patented Technology
- CastleLight Energy Corp. provides :
 - Overall Technology Management
 - System Engineering, Design, CFD & PEPSE Analysis
 - All Hardware, Equipment, Instrumentation, and Controls including supervision of installation by customer
 - Commercial Warrantee & Technology License

TECHNOLOGY LEAP FROGS!

When was the last time you:
Dialed a Phone?
Typed a Letter?
Flew in a Piston Engine Airplane?

Observe..... these technologies are obsolete!

Technology LEAP FROGS! It does not evolve.

Existing U.S. Coal-fired Plants

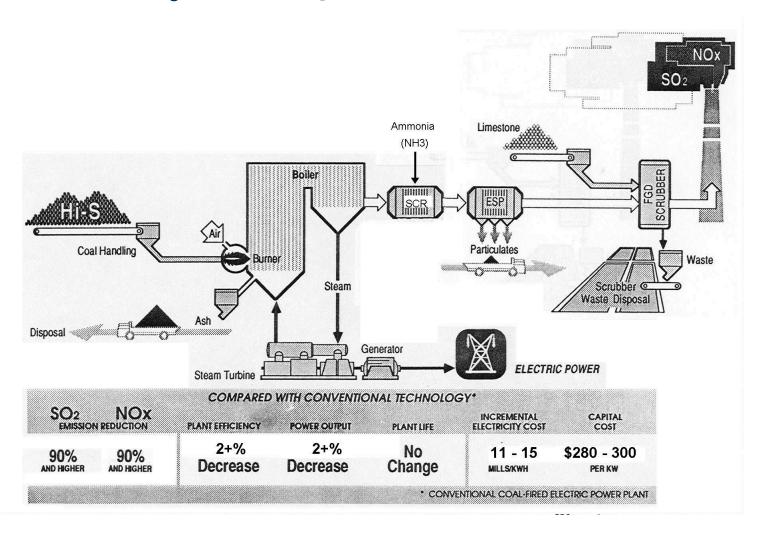
Must meet stringent EPA emission regulations

Some 600 older, smaller (100 to 400MW) coal-fired plants are subject to being mothballed, abandoned or demolished because of the following EPA regulations. They can not afford the cost for modifications!

- Cross-State Air Pollution Rule: SO₂ & NO_x
- MACT Rule: Mercury, HCI, & CO
- Clean Power Plan: CO₂ reduction
- Coal Combustion Waste:
- Wastewater Discharge:

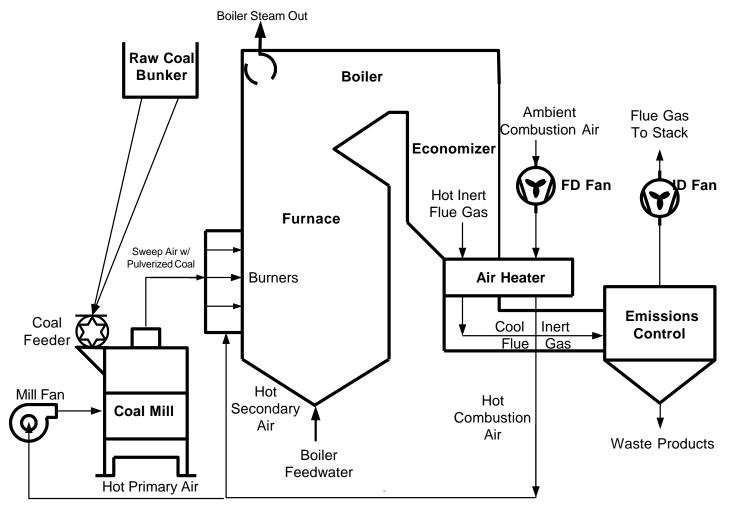
Re-Engineered Plant Performance Targets

Estimated: firing PRB coals * (1.2 lb. SO₂/mm Btu Coal)

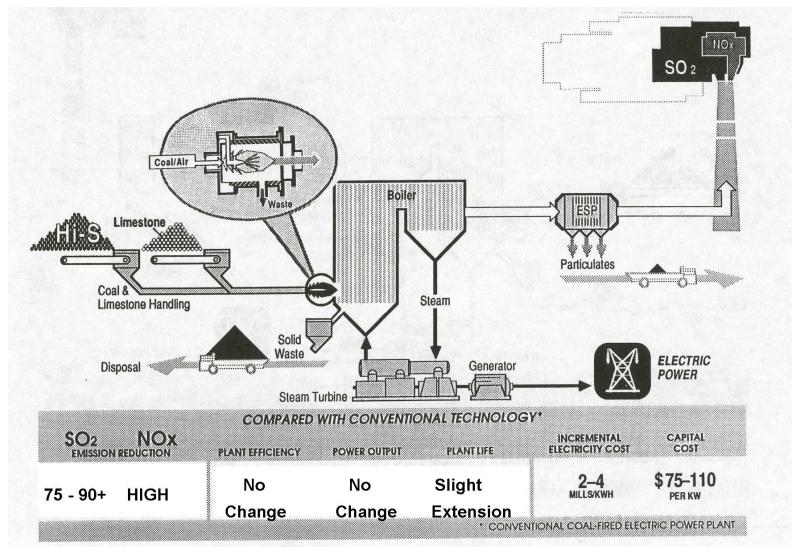

- SO_2 : < 0.2 lb./mmBtu (~ 105 ppm) ~80% SO_2 reduction
- NO_x : < 0.10 lb./mmBtu (~ 80 ppm)
- **CO:** < 320 ppm
- **SO**₃: Near Zero (condensable acid particulate)
- **HCI:** < 0.022 lb./mmBtu
- **Hg:** < 5.7 lb./Tbtu, (~ 40 ppb)
- Particulates: < 0.03 lb./mmBtu (bag house)
- Bottom Ash & Fly Ash: sailable product
- Waste Water: Reduce or eliminate
- **Plant Efficiency:** > 6% increase (= 6% CO₂ reduction)
 - Remove water from coal
 - High Temperature, high efficiency combustion (LOI < 1%)
 Provide clean furnace wall & back pass surfaces

 - Reduce flue gas exit temperatures
 - Address / reduce parasitic loads (add variable speed drives)
 - Possible Steam Turbine Upgrade

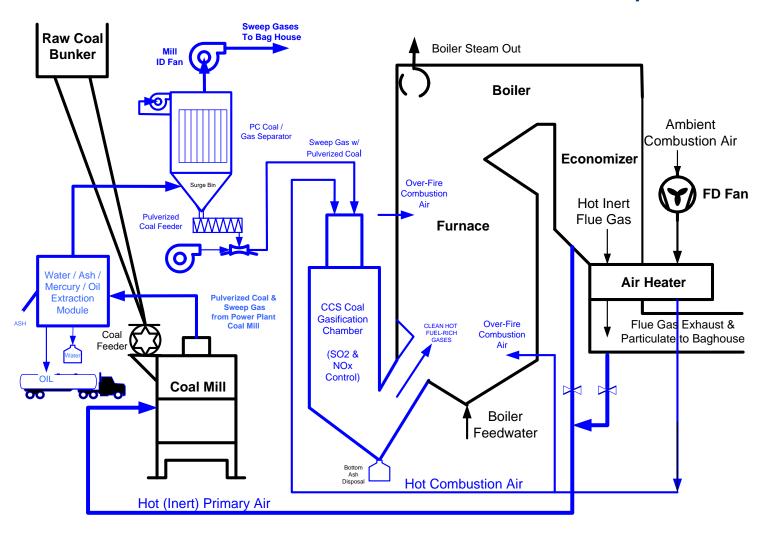
^{*} Preliminary estimates of performance, measured after bag house – no guarantees


Typical Coal-Fired Power Plant

with Back-End Emission Controls $SO_2 = FGD + Limestone; NO_x = SCR + Ammonia;$ $SO_3 = Trona ?, Hg = Activated Carbon ?$


Typical Pulverized Coal-Fired Power Plant

"Direct Fired" Pulverized Coal - 500 MW w/5 Mills -


Re-Engineered Coal-Fired Power Plant

with Coal Benefication & Hybrid of Coal-Gasification (SO₂ & NO_x Control Right in the Combustion Step)

Re-Engineered Power Plant

"Indirect Fired" - Coal-Beneficiation & Coal-Gasification / Combustion

Re-Engineered Power PlantCoal-Beneficiation Process

- Add Coal-Beneficiation Modules One for each coal mill
 - 1.) Replace the hot primary air to the coal mill:
 - With hot inert boiler flue gas ((low O₂ and near zero SO₃) Improves operation safety - eliminate mill fires & puffs
 - Dries the pulverized coal (to <10% moisture)
 - 2. Re-direct the powdered coal and wet sweep gas from the mill to a small bag house:
 - Separate the wet sweep gas from the dry coal.
 - Dispose the wet sweep gas around the boiler to plant stack. (removed water improves boiler efficiency)
 - Collect the dry powdered coal in the bag house hopper
 - 3.) Meter the dry powdered coal to new Gasification Burners

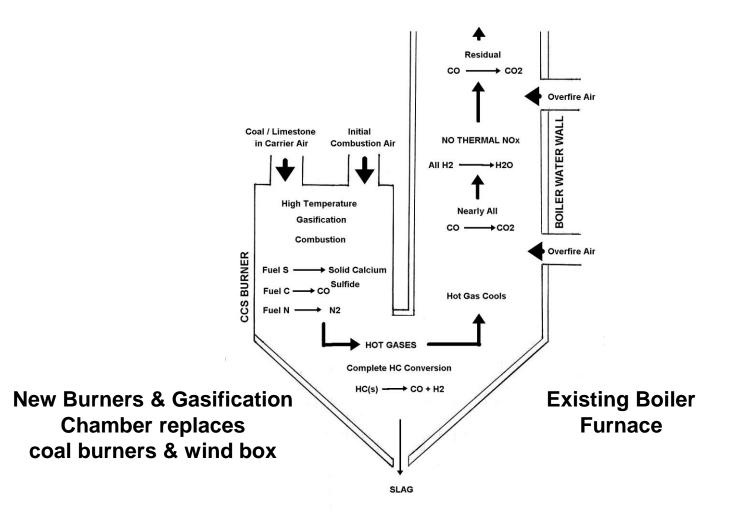
Must process the coal as fast as it is pulverized (~one cubic foot coal / second)

© Copyright 2015	CastleLight Energy Corp
S CODVINGIL 2013	Cashelight Lifety Con

Coal Beneficiation Target

Powder River Basin (PRB) Low Rank Coals

- Coal Characteristics PRB:
 - ~ 8300 Btu/Lb. - Low in Btu
 - High in Moisture 25 35%
 - High in Ash 10 – 15%
 - High in Mercury 130 to 150 ppb
- Coal Beneficiation Target PRB Coals :

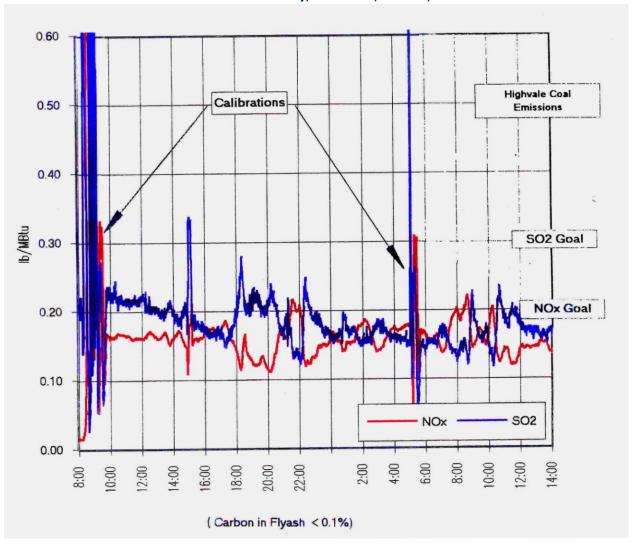

 - Increase Btu ~ 10,000 + Btu/Lb. (+20%)
 Reduce Moisture 10 12% (-50%)
 Reduce Ash 7 10%% (-50%)

 - Mercury Compliance ~40 ppb
- EPA MACT Mercury (Hg) Compliance:
 - Existing Plants = 5.7 lb./Trillion Btu or ~ 40 Parts / Billion

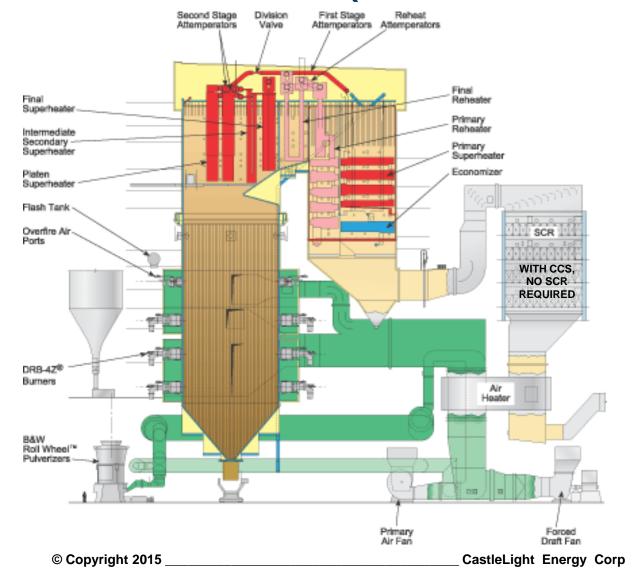
CastleLight Energy Corp © Copyright 2015

Schematic

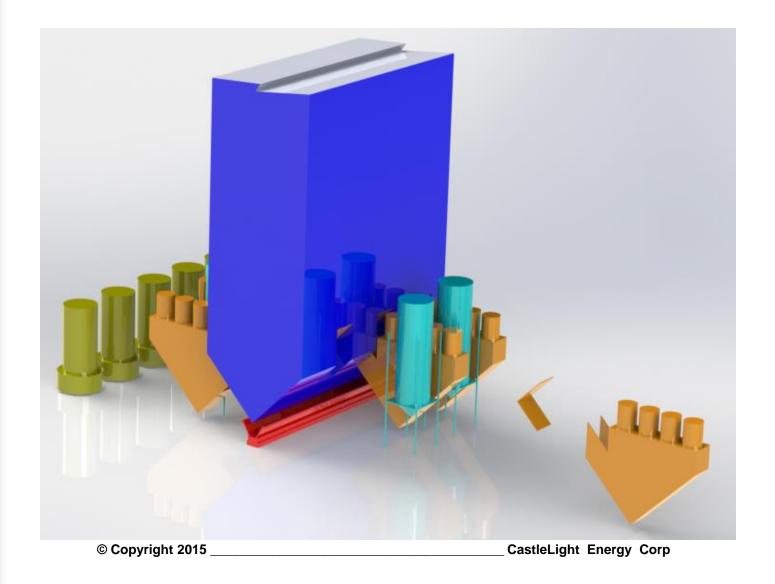
Hybrid of Coal-Gasification & Combustion


Coal-Gasification & Combustion Process SO₂ & NO_x emissions control right in the combustion step

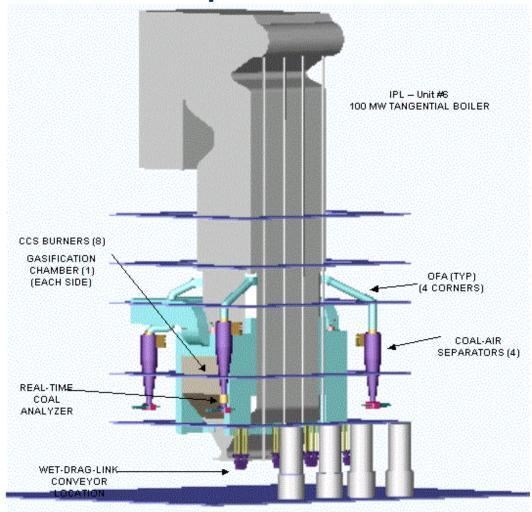
- An entrained-flow gasification of powdered coal; Creates a hot, fuel-rich gas, and frees the sulfur from the coal,
- Limestone provides calcium, captures the sulfur in the coal,
- Forms calcium sulfide (CaS) a solid particle,
- High temperatures melt the coal ash (alumina & silica) and encapsulate the CaS; forms liquid slag – drains as bottom ash,
- At these conditions, nitrogen is molecular N_2 (NO_x < 50 ppm),
- Clean hot gases CO, H₂ and N₂ enter boiler & cool,
- Staged over-fire air completes combustion to CO_2 & H_2O in boiler (<2300°F, where NO_x formation is frozen).


Demonstrated Emissions

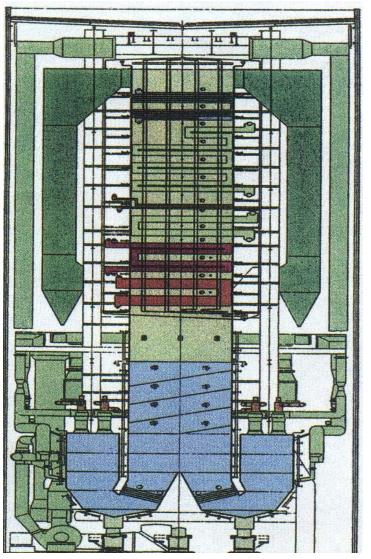
SO₂ - 0.2 lb./mmBtu & NO_x - 0.15 lb./mmBtu


ESSO LNS-CAP Facility, Cold Lake, Alberta, Canada

Example: Opposed-Wall Fired Boiler500 MW – 5 Mills & 24 PC Burners (Remove Burners & Wind box)



Re-Engineered Wall-Fired Boiler Install 6 Gasification Chambers & OFA, 24 Burners, 6 Bag houses


Re-Engineered Tangential™ Boiler

Example: 100 MW

New Steam Generator Design

With SO₂ & NO_x Emissions Control

Features:

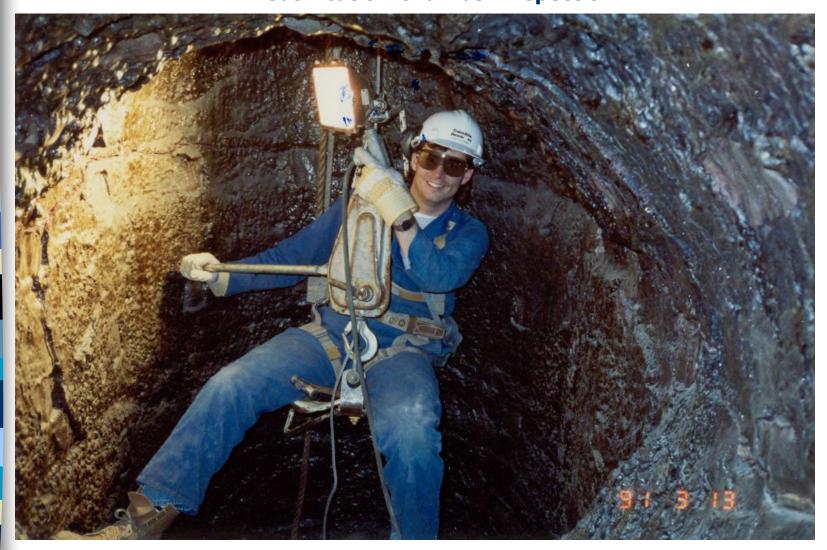
- Affordable Boiler Design
- Smallest Boiler Foot print per MW_T
- Largest Steam Output per Ton of Steel
- Near Zero SO₃ emissions
- High Combustion Efficiency (Reduced CO₂ - Near Zero LOI)
- Fires most all coal types
- PC Coal-fired w/Limestone added
- Slag Screen for Fly Ash Removal
- Wet bottom slagging operation
- Clean Furnace Walls
- Bottom Ash / Fly Ash is saleable
- No waste water disposal

Rockwell International

25 x 10⁶ Btu/hr (1 ton/hr) Test Facility (1990)

LNS-CAP Facility

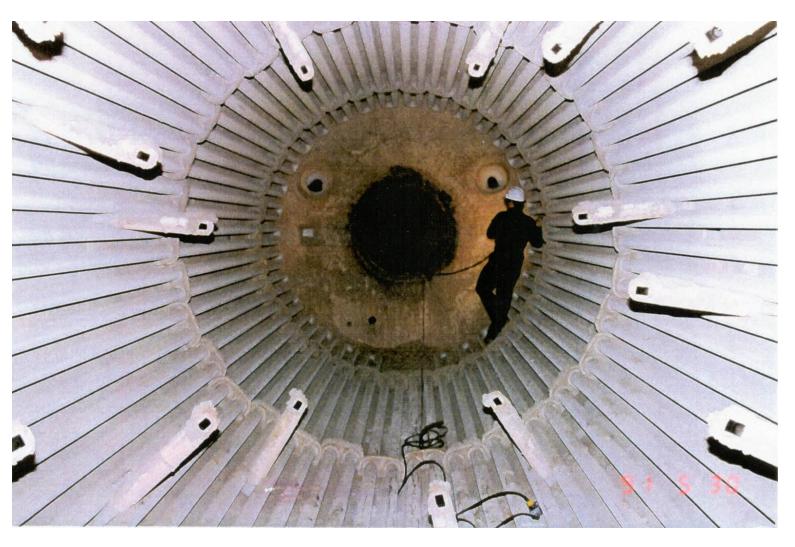
ESSO Site, Cold Lake, Alberta Canada 50 mmBtu/hr - 3T/hr PRB Coal


© Copyright 2015

CastleLight Energy Corp

LNS-CAPTop of LNS Burner

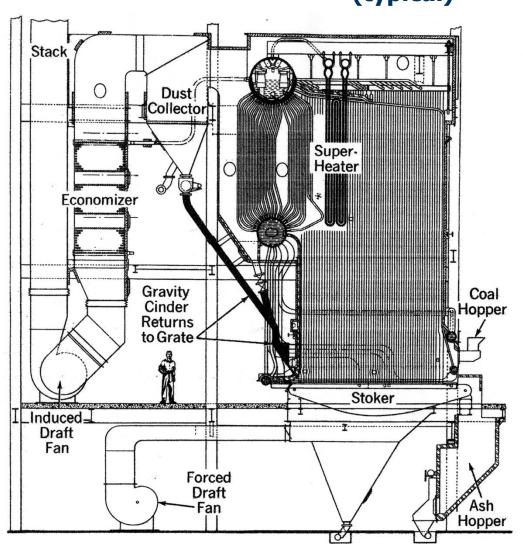
LNS-CAPGasification Chamber Inspection



LNS-CAPSlag to Water Trough

Boiler Radiant Section

View Forward to Burner



CCS-Stoker® Project

- Objective:
 - Reduce operating cost by half (switch to low-cost high-sulfur Illinois coal – 2.5 lb. SO₂/mmBtu) - Construction Permit w/ waiver NSPS, PSD; no NSR

 - Emissions Warrantee: <0.9 lb. SO₂/mmBtu, <0.25 lb. NO_x /mmBtu
- **Project Initiated**: Oct 2005, Commissioning: Jan 2007
- <u>CEC Scope</u>: Process Design & Engineering;- Supply all equipment, hardware, electrical, instrumentation / controls
 - Provide Commercial Warrantee & License
- **Client Scope**: Site Construction Management;
 - Equipment Installation, as directed by CLPRC
 - Commissioning & Start-up
- **Project Support**: In part, by the Illinois Department of Commerce and Economic Opportunity through the Illinois Clean Coal Institute and the Office of Coal Development.

Coal-Fired Stoker Boiler (typical)

CCS Retrofit Modifications

Remove:

Stoker Feeders, Ash Hopper, Brick over stoker grate Control Panel

New Equipment:


CCS Burner,
Gasification Chamber,
Combustion Air Heater
Boiler Instruments,
Coal Mill, Bag house, FD
fan, BM & Combustion Sys,
HMI & PLC Controls
New MCC

Operators (one/shift):

Was all manual operation; Now with HMI - from cold start to automatic full load operation in 5 hrs.

CCS-Stoker® Retrofit

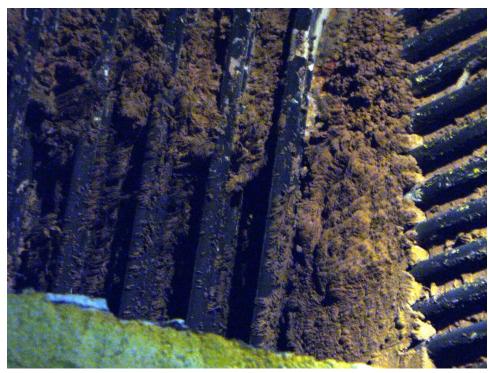
30 MW (Thermal) - 125 mmBtu/hr - 5 T/hr Coal

CCS-Stoker® Gasification Chamber

CCS-Stoker® Gasification Chamber Installation

- McBurney Corp designed and supplied the GC
- Connected to the boiler drums for natural circulation water cooling
- Shop fabricated membrane wall studded and refractory lined.

Coal - Sweep Gas Separator


- Separates powdered coal from mill sweep gas
- Inert gas used for bag cleaning (No O₂)
- Hopper w/ level switches maintains ~15 min. coal supply
- Gate & spouts to rotary feeders - meters PC to Gasification Burners

Stoker Boiler Furnace Deposits

Typical Examples

Operation Observations CCS-Stoker® Furnace Ash Deposits

CCS-Stoker® Operation @ MCR Steam Overboard

CCS-Stoker® Retrofit Performance

Preliminary Results – Full Load Operation

ltem	Stoker Base Line Test	Preliminary CCS Performance	% Change from Base Line
SO ₂ Stack Emissions (lb/MMBtu)	1.80	0.72	- 67.0 %
NOx Stack Emissions (lb/MMBtu)	0.50	0.14 (88 ppm)	- 72.0 %
Boiler Efficiency	77.0	86.9	+ 12.8 %
CO ₂ Emissions - Ton/yr GW credits (% Reduction)	94,019	73,720	20,300T/y (- 21.6 %)
Project Cost Recovery (from firing lower cost coal)		~ 3 years	

CCS Features

Improved Operability, Availability & Reliability

- All equipment off-the-shelf & familiar to the operators
 - Safe, stable burner operation,
 - Same startup, shutdown and turndown as the PC plant
- Bottom Ash (slag) removed before furnace
 - low particulate/ash load; clean furnace, less soot blowing
- Sulfur removed from furnace gases near-zero SO₃:
 - Allows for lower furnace exit temperatures
 - Minimize water-wall wastage & corrosion,
 - Can use hot boiler exhaust for pulverizer sweep air:

 - Dry the coal reject moisture
 Improves coal pulverizer safety from fire & puffs (low O₂)
- Improved Boiler Efficiency (2 to +10%)
 - Reduce CO₂ emissions
 - High combustion efficiency (LOI < 1%)
- Limestone is only "chemical" required
- No waste water for disposal
- Construction permit with waiver of NSPS & PSD
 - No New Source Review (NSR) Trigger!

© Copyright 2015 CastleLight Energy Corp

CCS Summary

(Key Strategic Issues)

- From Fundamental Combustion Theory to Commercial Operation
- Fire lower cost coals reduce plant operating cost
- Meets EPA's new stringent regulations for SO₂ & NO_x
- Allow power plant upgrade with waiver of NSPS & PSD No NSR
- Low Retrofit Cost; maintains older, smaller plants competitive
- Improve plants capacity factor & dispatch
- Fits within plant & boiler site footprint
- Ash products have value (sell bottom ash & fly ash)
- No hazardous or toxic chemicals required

It's ADVANCED COAL GASIFICATION TECHNOLOGY!

© Copyright 2015	CastleLight	Energy	Corp
------------------	-------------	--------	------

Strategic Business Opportunity?

Acquire Abandoned Coal-fired Power Plants

- Re engineer and Update PC Electric Generation Plant;
 - Provides SO₂ & NO_x emissions control,
 - Waiver of NSPS, PSD, & no NSR
- Integrate a CBM on each coal Mill
- Improved power plant performance
 - improves boiler heat rate/efficiency less fuel fired
- Very competitive dispatch;
 - "paid for" fuel = low cost electricity
- Meet EPA "CSPR & MACT goals

CastleLight Energy Corp. Re Engineering Program

For Technical Presentations and Plant Surveys : Contact CastleLight Energy Corp.

Keith Moore - President

Phone: 805-551-0983 E-mail: keith@castle-light.com

See Web Site: www.Castle-Light.com

- "Re-Engineering Coal-Fired Power Plants for Low Emissions and Competitive Electricity Dispatch"
- "Operating Experience of a Coal-Fired Boiler Retrofit with an Advanced Hybrid of Coal Gasification For SO₂ & NO_X Emissions Control and Reduced Operating Cost"
- Proposal: "Re-Engineering Coal-Fired Power Plants with the Clean Combustion System"