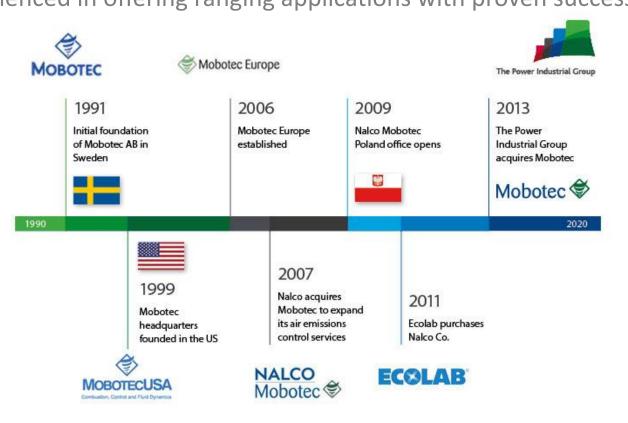
Advanced Chemistry Modeling for SO2, SO3, and HCl Removal by Dry Sorbent Injection


Presented by: Guisu Liu, Ph.D., Director of Technology

About Us – History

 The business has been delivering solutions for over 25 years' and is experienced in offering ranging applications with proven success

About Us – Core Technologies

ROFA®

Rotating Opposed Fire Air

- Up to 65% NOx reduction
- Combustion Optimization
- Tailored for upgradability
- Wide boiler applicability

ROTAMIX[®]

Rotating Opposed Fire Air

- 30-50% NOx Reduction
- 3rd Generation SNCR
- Tailored for upgradability
- Wide boiler applicability

SORBMIX[®]

Lance-less sorbent injection

- Sorbent neutral
- Performance up to 25%
- Reduced sorbent up to 40%
- Tailored for upgradability

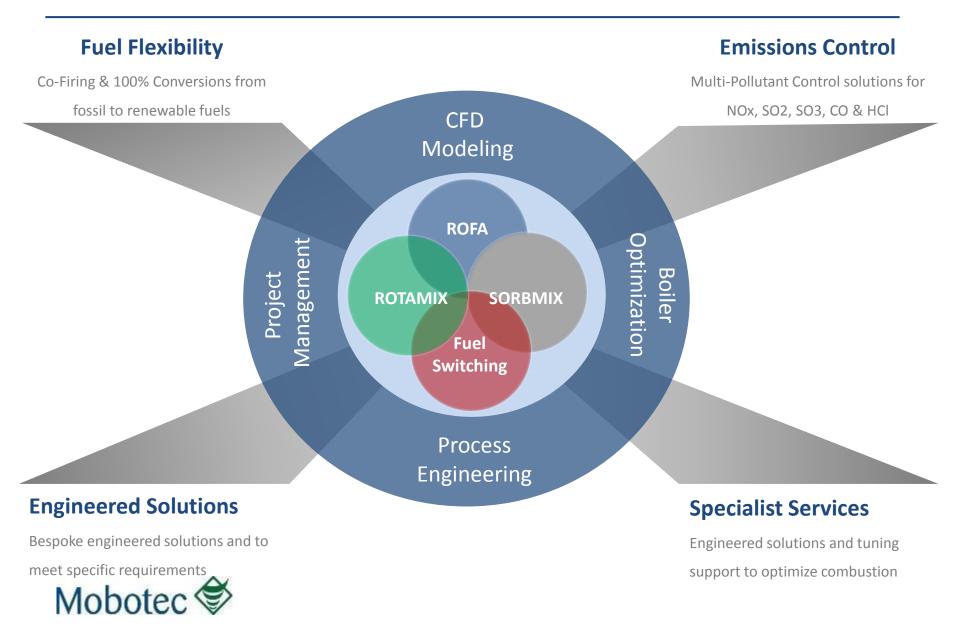
Biomass Conversion

- Cost-effective solutions
- Ability to co-fire to 45%
- Ability to Convert 100%
- Low impact of operations

Low capital cost solutions meeting high performance requirements

Multi-pollutant control for NOx, SO2, SO3, HCl, Hg, CO2, LOI

In-House CFD, Engineering & Combustion Tuning services


Upgrade systems for enhanced performance

Improved Boiler Operation / Efficiency

Reducing Operational Costs

About Us – Application Diversity

About Us – Mobotec Offering

Capital Projects

Proven cost-effective solutions to meeting multipollutant compliance requirements

- ROFA[®] Rotating Opposed Fire Air
- ROTAMIX[®] Advanced SNCR
- SORBMIX[®] Sorbent Injection

Upgrade Solutions

Increased performance and reduced costs over traditional installed equipment

- 'Boosting' existing Over-Fire Air systems
- Improving effectiveness of installed SNCR
- Reducing sorbent usage in DSI & FSI systems

Fuel Flexibility

Working in conjunction with the client to deliver a cradle to grave solution

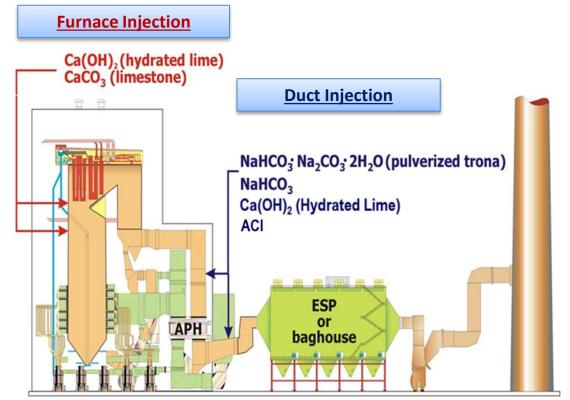
- Feasibility & FEED Study evaluations
- Biomass Co-Firing (up to 45%)
- Full coal-to-biomass conversions

Specialist Services

Leading solutions provider, with unique capabilities and proven experience to deliver

- CFD Modeling
- Engineering Studies
- Combustion Tuning

About Us – Global Experience


 Through offices across North America & Europe, Mobotec has completed nearly 100 major projects worldwide

+	X		Boiler Configuration	No.	Range
	Corporate Offices Americas & Asia	Corporate Offices Europe, Middle East & Africa	Wall-Fired (incl. opposed, corner & rear)	37	25 – 570 MWe
	- Naperville, Illinois - Walnut Creek, California	Daresbury, Cheshire Castle Donington, Leicestershire	T-Fired	28	70 – 705 MWe
- 14			Stoker/Grate	22	16 – 32 MWe
12			Fluidized Bed	7	80 – 235 MWe
		22	Other Incl. Process Heaters	2	8 – 15 MWe
	4 39 39 4 20			Carlo -	
- 1 664				R	
Go	ogle			1	

Sorbent Injection Overview

Multi-pollutant SO2, SO3, HCl, Hg Control

- Understanding <u>mixing</u> is key to developing mixing strategy
- Expertise on both <u>furnace</u> injection and <u>duct</u> injection
- <u>Chemistry</u> well understood
- Strong <u>CFD modeling</u> expertise on both mixing and chemistry
- Understanding how furnace <u>combustion affects</u> sorbent technology and performance

Experience with Sorbent Injection

- Furnace Sorbent Injection (FSI) experience
 - 13 installations around the world
 - Projects ranging from 30 350 MWe
 - Utilizing a variety of limestone and hydrate lime sorbents
 - Primarily for the reduction of SO2
- Dry Sorbent Injection (DSI) experience
 - 3 trials in the United States
 - Projects ranging from 190 621 MWe
 - Utilizing a variety of Trona, SBC, hydrate lime sorbents
 - Primarily for the reduction of SO2, HCl, SO3

Understanding Sorbent Chemistry is Critical

Chemistry is captured into various chemistry sub-models that have been

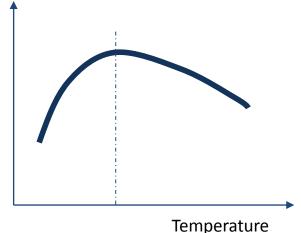
developed and incorporated into in-house CFD codes

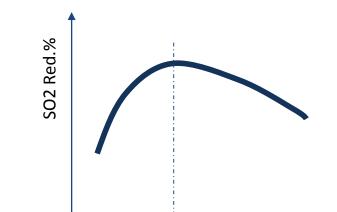
- Sorbent thermal decomposition
- Sorbent sintering characteristics and impact
- Sorbent physical property and its impact (Size, Surface area, Porosity)
- Absorption chemistry and kinetics
 - CaO reacts with SO2, SO3, HCl
 - Trona reacts with HCl, SO2, SO3
- Temperature impact
- Sorbent dispersion and mixing impact

Mobotec's in-house modeling tools are unique and very useful to evaluate a

furnace or duct injection system prior to installation

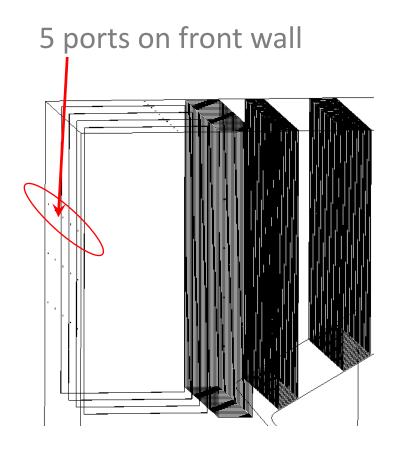
Ca-Based Sorbent Furnace Injection for SO2 Control



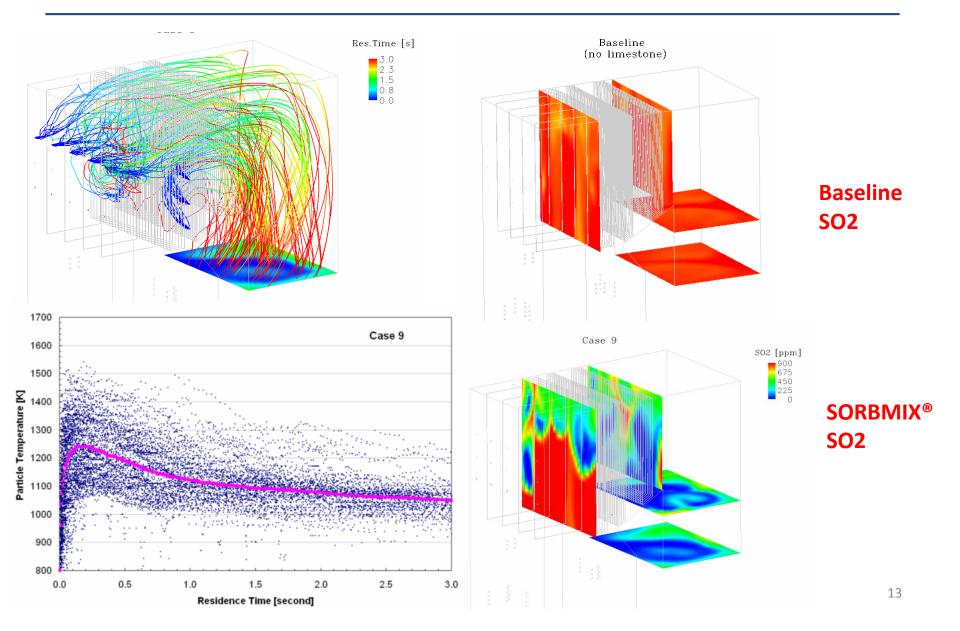

Fundamentals of Lime-Based Sorbent with SO2

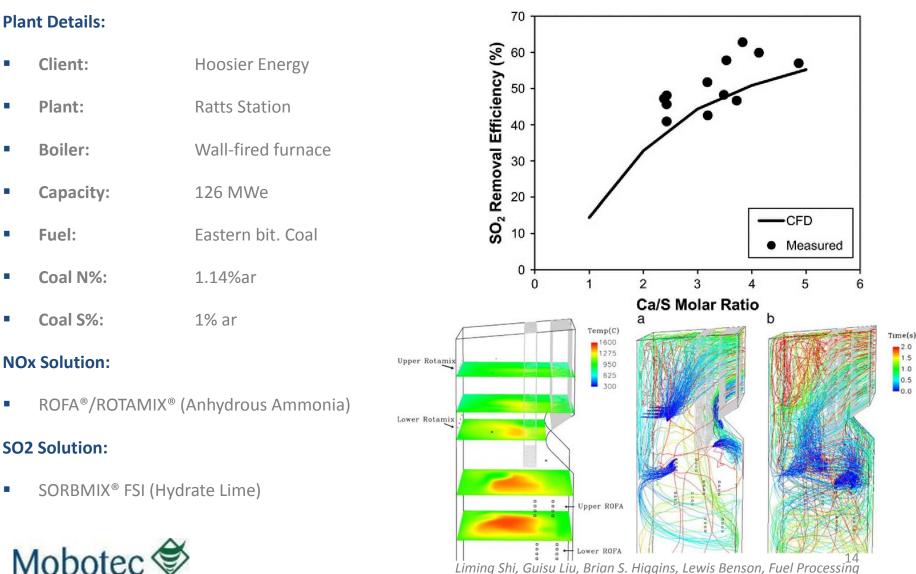
- Physical and chemical process of limestone or hydrate lime-SO2 in furnace
 - Calcination: CaCO3/Ca(OH)2 -> CaO + CO2/H2O
 - High level of calcination at higher temperatures
 - Resulting in high surface area •
 - Sintering
 - Sintering occurs at high temperatures
 - Resulting in reducing surface area and porosity
 - Sulfation: CaO + SO2 + 0.5 O2 -> CaSO4
 - Diffusion controlled process
 - Porosity decreases as sulfation degree increases
 - Shrinking core model
 - Diffusion
 - Bulk duffusion
 - Molecular diffusion
 - Knudsen diffusion
- All mechanisms are implanted as User-Defined Function in C++ language, and coupled with Fluent CFD code.
- Model can evaluate the factors affecting sulfation rate
 - Sorbent quality and size
 - Injecting temperature
 - Mixing between particles and SO2 in gas phase
 - Residence time

Mobotec @


Milne, C.R., Silcox, G.D., Pershing, D.W., Kirchgessner, D.A., Ind. Eng. Chem. Res. 29:P2192-2201,1990 Milne, C.R., Silcox, G.D., Pershing, D.W., Kirchgessner, D.A., Ind. Eng. Chem. Res. 29:P139-149.1990 Milne, C.R., Silcox, G.D., Pershing, D.W., Kirchgessner, D.A., Ind. Eng. Chem. Res. 29:P2201-2214,1990

SORBMIX®


SORBMIX® Injection Locations


Mobotec 🍣

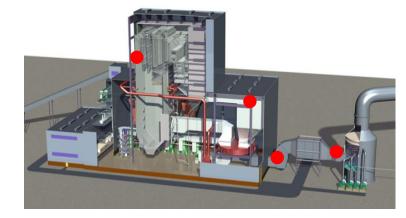
- SORBMIX[®] is a patented sorbent injection system that does not use traditional injection lances.
 - Consists of a small boosted ambient air fan, air duct, air injection nozzles, and dampers.
 - Can be applied to DSI, FSI or ACI systems
 - Benefits of SORBMIX[®] injection system:
 - Reduced sorbent usage
 - Improved pollutant reduction
 - Reduced operating cost
 - No in-furnace/duct lance
 - Reduced maintenance costs
 - Reduced injectors required

Particle Dispersion and SO2 Reduction

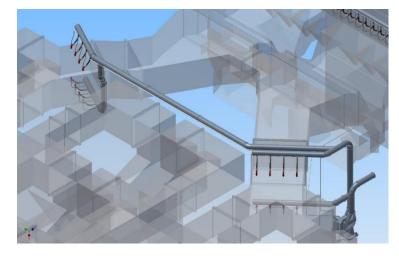
Full-Scale Application and Model Validation

Liming Shi, Guisu Liu, Brian S. Higgins, Lewis Benson, Fuel Processing Technology 92 (2011) 372–378

PRODUCT OFFERING

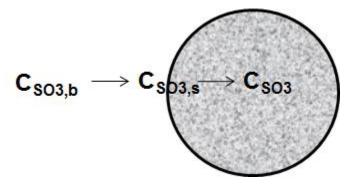

SORBMIX®

DSI Sorbent Injection for SO3 Control


SO3 Control by Sorbent Injection

- Multiple injection locations
 - In furnace
 - Before air pre-heater
 - Before electrostatic precipitator or fabric filter
 - Before flue gas desulfurization
- Various sorbents
 - Ca-based: Hydrated lime
 - Na-based: Trona, Sodium bicarbonate
 - Mg-based: Magnesium hydroxide

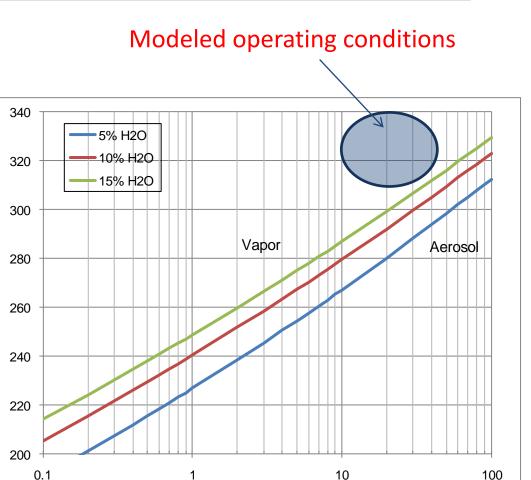
PRODUCT OFFERING


SORBMIX®

SO3 Absorption Chemistry

- SO3 or H2SO4 transport from bulk flow to particle surface
- SO3 or H2SO4 diffuse inside sorbent particle
- Reactions
 - SO3 + Ca(OH)2 = CaSO4 + H2O
 - H2SO4 + Ca(OH)2 = CaSO4 + 2H2O

External Internal resistance resistance

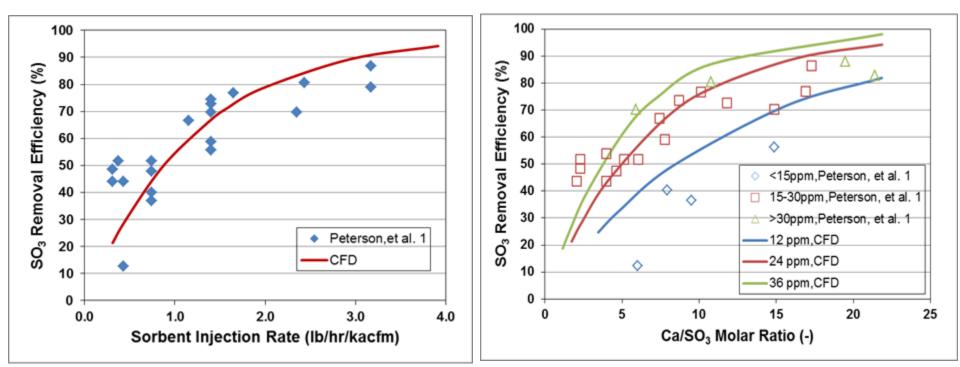

PRODUCT OFFERING
SORBMIX®

Operating Parameters

- Operating conditions
 - Sorbent injection rate
 - Inlet SO₃ concentration
 - Residence time
 - Temperature
- Sorbent properties
 - Pore volume
 - Specific surface area

Dewpoint Temperature (°F)

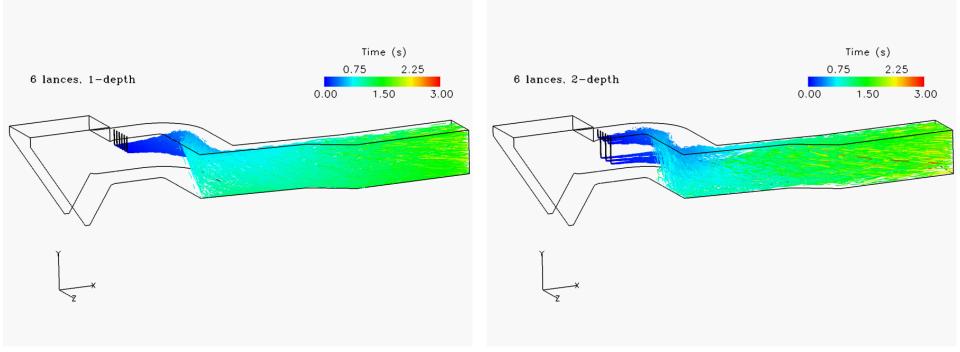
Particle size



H₂SO₄ Concentration (ppmw)

Verhoff, F.H., Banchero, J.T. Chemical Engineering Progress, 1974, 70, 71-72.

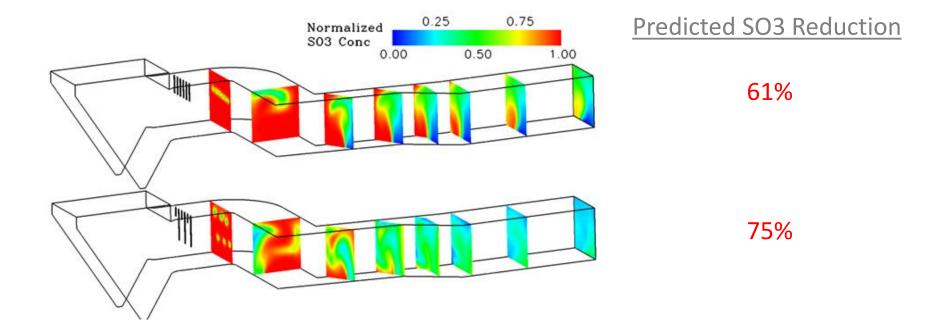
Model Validation



Liming Shi, Guisu Liu, Lewis Benson, "An Enhanced CFD Based Chemistry Model for SO3 Mitigation by Dry Sorbent Injection", Paper #117, MEGA Symposium, Baltimore, MD, September 2012

Industrial Applications

Evaluating Particle Dispersion for Different Injections


CFD model was used to evaluate the injection strategy and to predict the

performance for DSI SO3 reduction system at a 450 MW unit.

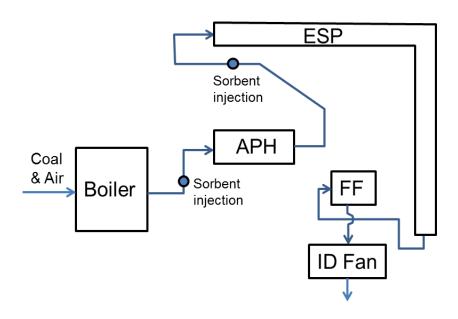
SORBMIX®

Predicting SO3 Reduction for Different Injections

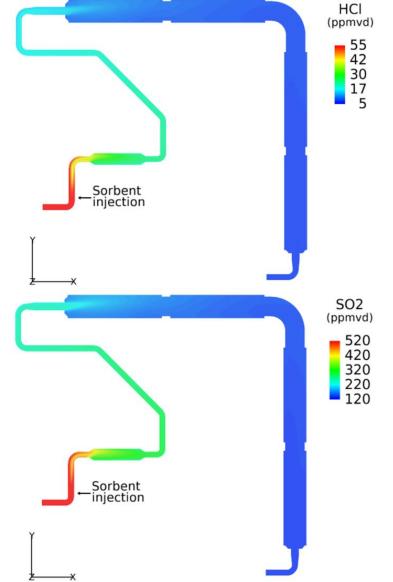
Trona Injection for SO2/HCI Control through DSI

SORBMIX®

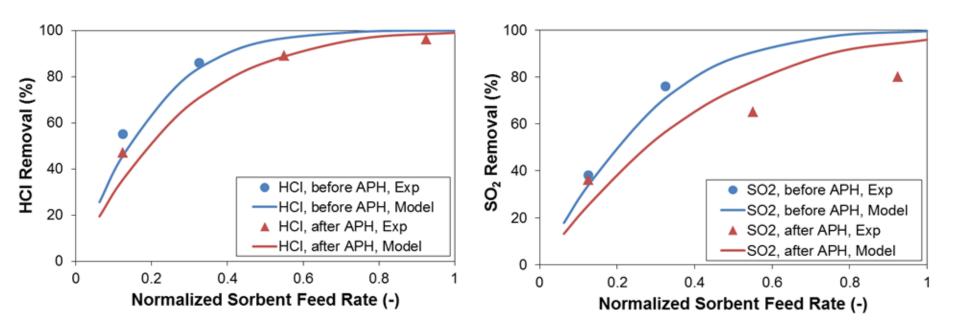
Fundamentals of Trona Reacting with HCl and SO2


- Trona calcination
 - $2Na_2CO_3 \cdot NaHCO_3 \cdot 2H_2O \leftrightarrow 3Na_2CO_3 + CO_2 + 5H_2O$
 - Resulting in high porous Na2CO3 particles
- Sintering
 - Sintering kinetics
 - Resulting in loss in surface area and porosity
- Global <u>simultaneous</u> reactions
 - $2HCI + Na2CO3 \leftrightarrow 2 NaCI + CO2 + H2O$
 - SO2 + 0.5O2 + Na2CO3 \leftrightarrow Na2SO4 + CO2
- Reaction mechanisms
 - Chemical reaction kinetics
 - Diffusion (Pore diffusion/Knudson diffusion/boundary layer diffusion)

A. Ekmekyapar, H. Erşahan, S. Yapıcı. Ind. Eng. Chem. Res., 1996, 35, 258-262.
G.P. Maule, J.H. Cameron. The Institute of Paper Chemistry. 1989, Paper 317.
T.C. Keener, W.T. Davis. JAPCA, 1984, 34, 651-654.
N. Verdone, P. De Filippis. Chemical Engineering Science, 2006, 61, 7487-7496.
C. Güldür, G. Doğu, T. Doğu. Chemical Engineering and Processing, 2001, 40, 13–18.
S. Kimura, J.M. Smith. AIChE Journal, 1987, 33, 1522-1532.


PRODUCT OFFERING
SORBMIX®

Pilot-Scale Testing Facility



- Backend includes APH, ESP, FF, ID fan
- Subbituminou coal
- HCI: 50-60 ppmv
- SO₂: 500-600 ppmv

Model Validation

- Sensitivity analysis of parameters related with operating conditions and sorbent properties are completed.
- Competitive reaction of HCl and SO2 with sorbent is well predicted.
- Model predictions on the HCl and SO2 removal at WRI testing facility are in good agreement with measured values before APH and after APH injections.

Summary

- Advanced chemistry sub-models have been developed for sorbent injection technologies including:
 - Ca-based sorbent for SO2 control in furnace
 - Hydrate lime injection for SO3 control
 - Trona injection for SO2/HCl control
- Fundamental kinetic data were implemented in the model, which was then coupled with CFD code through user-defined functions (UDFs).
- Each of these chemistry models have been validated against testing data.
 Incorporated with CFD, this validated advanced chemistry sub-models can be used as an important tool to optimize DSI/FSI injection system, as well as to predict sorbent usage for specific applications.

Mobotec North America

1600 South Main Street Ste 332 Walnut Creek CA 94596-8814 United States

t: +1 (925) 935-2500 e: info@mobotecgroup.com w: www.mobotecgroup.com

Mobotec North America

t: +1 (630) 364-2711

e: info@mobotecgroup.com

w: www.mobotecgroup.com

1717 North Naper Boulevard Ste 202 Naperville IL 60563 United States

Mobotec Europe

. Cinnabar Court

5300 Daresbury Park

Warrington Cheshire

WA4 4GE

United Kingdom

t: +44 1928 248662 e: info@mobotecgroup.com w: www.mobotecgroup.com

