

PM Compliance Options for MACT and MATS Rules

Ed McCall PCME

First Some Definitions: PM- CEM, PM-CPMS and BLDs

PM-CEM (PM- Continuous Emission Monitor)

PM-CPMS (PM-Continuous Parametric Monitoring System)

- Forward scatter/ Beta or mass CEM (for wet and dry processes)
- PM-CEM: Calibration in mg/m³
- PM-CPMS: Simpler calibration (Operating Limit)

BLD: Bag Leak Detector

- Provides trend of emissions
- Automatic self-checks save end user doing manual drift checks
- Often required if using Fabric Filter (FF)

- Non-mercury metals and the many non-dioxin/furan organic HAP's are difficult to measure with continuous monitors.
- Instead, easily measured pollutants that correlate with HAP's are substituted as *surrogates*.
 - Two types of particulate matter (PM)
 - Filterable : Solid phase in stack
 - Filterable PM is a surrogate for non-mercury hazardous metals (arsenic, beryllium, cadmium, chromium, manganese, nickel).
 - Condensable: Gas phase in stack. Forms PM after reacting in atmosphere.
 - Selenium correlates somewhat with condensable PM (Se in gas phase in stack - forms PM after cooling).
 - Condensable PM is difficult to measure continuously & with reference methods so only solid phase PM is used.

Portland Cement MACT

- Lowers PM, mercury and HCL limits
- Requires PM CEMS / CPMS (dry stack continuous particulate monitors)
 - PM limits (30 day rolling averages)
 - Existing kilns = 0.07 lbs/ton clinker (~10 mg/Am^3)
 - New kilns = 0.02 lbs/ton clinker (~3mg/Am^3)
 - Clinker Cooler Stack must have PM CEMS / CPMS
- Bag houses (fabric filters) need Bag Leak Detector
- Need stack flow monitor due to plant "output-based" PM units
 - Technologies of interest for stack flow include

- Ultrasonic time-of-flight
- Hot wire anemometer

Pitot tube

PCME STACKFLØW 400

MATS Rule

- Mercury and Air Toxics Standard (a.k.a. Utility MACT) applies to Electric Generating Units (EGU's)
 - 3 PM compliance options
 - PM CPMS (not typically used in MATS rule)
 - PM CEMS (certified using PS-11)
 - Quarterly reference method tests (MATS Method 5 or metals method)
 - PM limits for bituminous coal fired EGU's (30 day rolling averages)
 - Existing Source: 0.03 lbs/mmBTU (~24 mg/Am^3)
 - New Source: 0.007 lbs/MHr (~4 mg/Am^3)

ICI Boiler MACT

- Industrial/Commercial/Institutional Boiler MACT rule has a long complicated history
 - Typical affected sources are pulp and paper mills, other manufacturers (grain processors, autos, etc.), steam heating boilers for large commercial & institutional building complexes
 - PM CEMS/CPMS needed for coal & oil fired boilers (biomass excluded) with heat rate >= 250 mmBTU/Hr, which is about 75 MW.
 - PM limits for existing boilers vary by subcategory (biomass, oil, pulverized coal, etc.) but are similar to EGU MATS rule limits.
 - Bag houses (fabric filters) need Bag Leak Detector
 - Opacity limit of 10% for sources >10 mmBTU/Hr and <250 mmBTU/Hr

-

Procedure 2

PS-11 Correlation Test

- Minimum of 15 runs in 3 bins (0 to 50%, 25% to 75%, 50% to 100% of maximum RM value of PM).
 - Bag house sources w/o bypass have difficulty elevating emissions
 - Ash from ESP or bag house can be injected downstream (not recommended for wet sources)
 - PS-11 does allow use of zero point data from the PM CEMS in lieu of the 3 bins

EGU Wet FGD Plant Abatement Processes

- PM CEM's have been installed on many US EGU wet stacks after various abatement processes
 - Wet FGD and ESP with occasional bag house in place of ESP
 - Some with SNCR, some with SCR, some with no de-NOx
 - Some with Ca(OH)₂ sorbent injection

Value of PM CEMS

- Abatement plant optimization
- Annual vs Quarterly Testing
- Continuous feedback on plant operation

Altech STACK 181WS PM CEM / CPMS

Measurement Concept

- 1. Extract wet flue gas at appropriate velocity (can sample at fixed or variable velocity)
- 2. Change liquid content into gas phase
- 3. Measure dust concentration with light scatter technique
- 4. Return sample back to stack

STACK 181WS Improvements

• Purged Sample Chamber (PSC)

- Improves maintenance interval, reduces cost of ownership by
 - Reducing sample chamber dead spaces where contamination can accumulate
 - Heating purge air preventing formation of condensation on optics
- Currently installed at several
 US Electrical Utility stacks
 with excellent results

181 ProScatter™ Forward Scatter Technology

QUARTZ ROD -

- Conical mirror improves light collection by gathering full cone of scattered light.
- Narrow forward scatter angle minimizes effect of changing particle size.
- While the calibration is still sensitive to changes in particle size, ProScatter has reduced sensitivity compared to designs using angles further from angle of incidence.
- Span check is provided by introducing a scatter body in light path.

PCME Wet Stack Particulate Monitor

STACK 181WS PS-11 Correlation Tests

- Upscale particulate achieved by detuning plant (removing precipitator banks, turning off FGD pumps)
- Reference was MATS Method 5 (160° C filter temperature)

Correlation	equation:	y =	1.519	+ 0.3	71	X	
Summany	of Accontant	o Critoria f	or DC 44				
	of Acceptance		1	A			
Criterion		Actual		Acceptable			
Correlation	n coefficient	0.997	<u>≥</u> 0.85	yes			
Confidence	e interval	3.57%	<u><</u> 10%	yes			
Tolerance	interval	11.3%	<u>≤</u> 25%	yes			
* Indicates	correlation c	oefficient is	undefined.				
BW Concentration - 05 - 05 - 01 - 05 - 01 - 01 - 05 - 01 - 05 - 01 - 05 - 01 - 05 - 01 - 05 - 01 - 05 -	Plot of Linear y = 0.3715x +		Line	•	150.0	1	
	I	PM CEMS Resp	ponse				

Variability in PS-11 Correlation Test Slopes at Fifteen STACK 181WS Sites

	PS-11 Correlation Curve Coefficients														
	Site	Site	Site	Site	Site	Site	Site	Site	Site	Site	Site	Site	Site	Site	Site
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
b0	1.751	1.945	1.416	1.211	1.758	3.11	-0.146	1.528	3.30	4.29	9.59	13.30	5.43	6.95	6.41
b1	0.910	0.24	0.37	0.383	0.292	0.34	0.424	0.399	0.315	0.32	0.32	0.30	0.38	0.84	0.81
b2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

- Plant configurations
 - All had Wet FGD &
 Precipitator; many
 other differences
- Slopes clustered in two groups
 - 0.24 to 0.42
 - 0.81 to 0.91
- Why the difference?
 - May be due to particle size dissimilarity from various but constant plant configurations

PCME's background in PM monitoring

- Specialist supplier of PM monitors (30,000 to industrial processes across 6 continents)
- Core technologies
 - Light scatter
 - Electrodynamic
 - Scintillation
- Recently expanded US based service and support capability

